1987 Arctic Cat
AFS Models
El Tigre® - Pantera® - Cougar® - Cheetah®
Service Manual

ARCTIC CAT
Get on it.

Certified Parts Corporation
This manual contains service, maintenance, and troubleshooting information for the 1987 A.F.S. (Cougar-Pantera-Cheetah F/C-Cheetah L/C-EI Tigre 5000-EI Tigre 6000) Snowmobiles. The manual is designed to aid service personnel in service-oriented application and may be used as a textbook for service training.

The manual is divided into sections. Each section of the manual covers a specific snowmobile component or system and, in addition to the standard service procedures, includes assembling, disassembling, and inspecting instructions. A troubleshooting section is also included in this manual.

The service technician should become familiar with the operation and construction of each component or system by carefully studying this manual. This manual will assist the service technician in becoming more aware of and efficient with servicing procedures. Such efficiency not only helps build consumer confidence but also saves time and labor.

The procedures in this manual include the complete disassembly of all 1987 A.F.S. model components. When servicing the A.F.S. models, the technician should use discretion as to how much disassembly is needed to correct any given condition.

The manual uses the words Warning, Caution, and Note to emphasize certain information. The symbol ▲ WARNING ▲ identifies personal safety-related information. Therefore, be sure to read the directive because it deals with the possibility of personal injury. The symbol ● CAUTION ● identifies snowmobile-related information. Be sure to read the directive because it deals with the possibility of damaging a part or parts of the snowmobile. If the directive is violated, the snowmobile will usually sustain major damage. The symbol ■ NOTE: identifies supplementary information worthy of particular attention.

At the time of publication, all information, photographs, and illustrations were technically correct. Because Arctic, Inc. constantly refines and improves its products, no retroactive obligation is incurred.

All materials and specifications subject to change without notice.

Keep this manual accessible in the shop area for reference.

Service Department

CERTIFIED PARTS CORPORATION
1111 W. RACINE ST., JANESVILLE, WISCONSIN 53545
PHONE 606/752-9441

November 1986
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General Information</td>
<td>1-6</td>
</tr>
<tr>
<td>2. Engine</td>
<td>7-43</td>
</tr>
<tr>
<td>3. Fuel System</td>
<td>45-58</td>
</tr>
<tr>
<td>4. Drive System</td>
<td>59-96</td>
</tr>
<tr>
<td>5. Electrical System</td>
<td>97-114</td>
</tr>
<tr>
<td>6. Steering and Body</td>
<td>115-137</td>
</tr>
<tr>
<td>7. Track/Suspension</td>
<td>139-161</td>
</tr>
<tr>
<td>8. Recoil Starter</td>
<td>163-166</td>
</tr>
<tr>
<td>9. Aids For Maintenance</td>
<td>167-171</td>
</tr>
<tr>
<td>10. Troubleshooting</td>
<td>173-184</td>
</tr>
</tbody>
</table>
SECTION 1 — GENERAL INFORMATION

TABLE OF CONTENTS

Specifications .. 2-3
Break-In Procedure .. 4
Recommended Gasoline 4
Recommended Oil .. 4
Genuine Parts ... 4
Summer Storage .. 4-5
Preparation After Storage 5-6
Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>COLUGAR</th>
<th>PANTERA</th>
<th>EL TIGRE 5000</th>
<th>CHEETAH F/C</th>
<th>CHEETAH L/C</th>
<th>EL TIGRE 5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine and Drive</td>
<td>AM50A3</td>
<td>AH44L4</td>
<td>AH44L4</td>
<td>AM50A3</td>
<td>AA53L2</td>
<td>AA53L2</td>
</tr>
<tr>
<td>Displacement</td>
<td>500 (30.5)</td>
<td>435 (25.6)</td>
<td>435 (26.6)</td>
<td>500 (30.5)</td>
<td>529 (32.3)</td>
<td>529 (32.3)</td>
</tr>
<tr>
<td>Bore x Stroke</td>
<td>70 x 65 (2.756 x 2.559)</td>
<td>68 x 60 (2.679 x 2.364)</td>
<td>68 x 60 (2.679 x 2.364)</td>
<td>70 x 65 (2.756 x 2.559)</td>
<td>72 x 65 (2.835 x 2.559)</td>
<td>72 x 65 (2.835 x 2.559)</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>6.4:1</td>
<td>6.8:1</td>
<td>6.8:1</td>
<td>6.4:1</td>
<td>6.6:1</td>
<td>6.8:1</td>
</tr>
<tr>
<td>Piston-Ring End Gap Range</td>
<td>0.20-0.83 (0.008-0.033)</td>
<td>0.20-0.83 (0.008-0.033)</td>
<td>0.20-0.83 (0.008-0.033)</td>
<td>0.20-0.83 (0.008-0.033)</td>
<td>0.20-0.83 (0.008-0.033)</td>
<td>0.20-0.83 (0.008-0.033)</td>
</tr>
<tr>
<td>Piston Skirt/Cylinder Clearance Range</td>
<td>0.20-0.83 (0.008-0.033)</td>
<td>0.20-0.83 (0.008-0.033)</td>
<td>0.20-0.83 (0.008-0.033)</td>
<td>0.20-0.83 (0.008-0.033)</td>
<td>0.20-0.83 (0.008-0.033)</td>
<td>0.20-0.83 (0.008-0.033)</td>
</tr>
<tr>
<td>Piston Pin Diameter Range</td>
<td>17.995-18.000 (0.7085-0.7087)</td>
<td>17.995-18.000 (0.7085-0.7087)</td>
<td>17.995-18.000 (0.7085-0.7087)</td>
<td>17.995-18.000 (0.7085-0.7087)</td>
<td>17.995-18.000 (0.7085-0.7087)</td>
<td>17.995-18.000 (0.7085-0.7087)</td>
</tr>
<tr>
<td>Connecting-Rod Small End Diameter Range</td>
<td>23.00-23.01 (0.9056-0.9059)</td>
<td>23.00-23.01 (0.9056-0.9059)</td>
<td>23.00-23.01 (0.9056-0.9059)</td>
<td>23.00-23.01 (0.9056-0.9059)</td>
<td>23.00-23.01 (0.9056-0.9059)</td>
<td>23.00-23.01 (0.9056-0.9059)</td>
</tr>
<tr>
<td>Crankshaft End Play Range</td>
<td>0.05-0.10 (0.002-0.004)</td>
<td>0.05-0.10 (0.002-0.004)</td>
<td>0.05-0.10 (0.002-0.004)</td>
<td>0.05-0.10 (0.002-0.004)</td>
<td>0.05-0.10 (0.002-0.004)</td>
<td>0.05-0.10 (0.002-0.004)</td>
</tr>
<tr>
<td>Crankshaft Runout (max.) (Total Indicator Reading)</td>
<td>0.05 (0.002)</td>
<td>0.05 (0.002)</td>
<td>0.05 (0.002)</td>
<td>0.05 (0.002)</td>
<td>0.05 (0.002)</td>
<td>0.05 (0.002)</td>
</tr>
<tr>
<td>Cylinder Trueeness max.</td>
<td>0.1 (0.0039)</td>
<td>0.1 (0.0039)</td>
<td>0.1 (0.0039)</td>
<td>0.1 (0.0039)</td>
<td>0.1 (0.0039)</td>
<td>0.1 (0.0039)</td>
</tr>
<tr>
<td>Drive Clutch/Driven Pulley Offset</td>
<td>34.7 (1.365)</td>
<td>34.7 (1.365)</td>
<td>34.7 (1.365)</td>
<td>34.7 (1.365)</td>
<td>34.7 (1.365)</td>
<td>34.7 (1.365)</td>
</tr>
<tr>
<td>Center-to-Center Distance</td>
<td>25.9 (10.2)</td>
<td>25.9 (10.2)</td>
<td>25.9 (10.2)</td>
<td>25.9 (10.2)</td>
<td>25.9 (10.2)</td>
<td>25.9 (10.2)</td>
</tr>
<tr>
<td>Engagement Speed (RPM)</td>
<td>3600-4000</td>
<td>4200-4800</td>
<td>4200-4800</td>
<td>4200-4800</td>
<td>4000-4600</td>
<td>4000-4600</td>
</tr>
<tr>
<td>Peak RPM</td>
<td>6800-7000</td>
<td>8350-8600</td>
<td>8350-8600</td>
<td>8350-8600</td>
<td>8500-8750</td>
<td>8500-8750</td>
</tr>
<tr>
<td>Ramp (cam arm) p/n</td>
<td>0146-294</td>
<td>0146-024</td>
<td>A-1 (46.5 Grams)</td>
<td>0146-294</td>
<td>A-1 (46.5 Grams)</td>
<td>A-1 (46.5 Grams)</td>
</tr>
<tr>
<td>Spring</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Weight</td>
<td>0.146-286</td>
<td>0146-105</td>
<td>N/A</td>
<td>0146-286</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Weight (high altitude)</td>
<td>0146-123</td>
<td>0146-136</td>
<td>0146-123</td>
<td>0146-136</td>
<td>0146-123</td>
<td>0146-136</td>
</tr>
<tr>
<td>Chain Pitch</td>
<td>68</td>
<td>72</td>
<td>68</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Sprocket Ratio</td>
<td>20/35</td>
<td>24/39</td>
<td>24/39</td>
<td>20/35</td>
<td>24/39</td>
<td>24/39</td>
</tr>
<tr>
<td>Lighting Coil Output @ 3000 RPM</td>
<td>12V/150W</td>
<td>12V/150W</td>
<td>12V/150W</td>
<td>12V/150W</td>
<td>12V/120W</td>
<td>12V/120W</td>
</tr>
<tr>
<td>Spark Plugs</td>
<td>NGKBR9ES</td>
<td>NGKBR9ES</td>
<td>NGKBR9ES</td>
<td>NGKBR9ES</td>
<td>NGKBR10EV</td>
<td>NGKBR10EV</td>
</tr>
<tr>
<td>Brake Type</td>
<td>Mechanical Caliper Disc w/Parking Brake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track Width</td>
<td>40.5 (16)</td>
<td>40.5 (16)</td>
<td>40.5 (16)</td>
<td>40.5 (16)</td>
<td>40.5 (16)</td>
<td>40.5 (16)</td>
</tr>
<tr>
<td>Overall Track Length</td>
<td>307 (121)</td>
<td>307 (121)</td>
<td>307 (121)</td>
<td>307 (121)</td>
<td>307 (121)</td>
<td>307 (121)</td>
</tr>
<tr>
<td>Track Length On Ground</td>
<td>76.2 (30)</td>
<td>76.2 (30)</td>
<td>76.2 (30)</td>
<td>76.2 (30)</td>
<td>76.2 (30)</td>
<td>76.2 (30)</td>
</tr>
<tr>
<td>CARBURETOR</td>
<td>COUGAR</td>
<td>PANTERA</td>
<td>EL TIGRE 5000</td>
<td>CHEETAH F/C</td>
<td>CHEETAH L/C</td>
<td>EL TIGRE 6000</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>---------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Type</td>
<td>VM34</td>
<td>VM34</td>
<td>VM34</td>
<td>VM34</td>
<td>VM38</td>
<td>VM38</td>
</tr>
<tr>
<td>Main Jet**</td>
<td>260</td>
<td>260</td>
<td>260</td>
<td>260</td>
<td>370</td>
<td>370</td>
</tr>
<tr>
<td>Pilot Jet</td>
<td>35</td>
<td>27.5</td>
<td>27.5</td>
<td>35</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Needle Jet</td>
<td>P-4 166</td>
<td>P-4 166</td>
<td>P-4 166</td>
<td>Q-6 166</td>
<td>Q-6 166</td>
<td>Q-6 166</td>
</tr>
<tr>
<td>Jet Needle</td>
<td>6DH2-3</td>
<td>6DH3-3</td>
<td>6DH2-3</td>
<td>6DH8-2</td>
<td>6DH8-2</td>
<td>6DH8-2</td>
</tr>
<tr>
<td>Jet Needle (high altitude)</td>
<td>6DH2-2</td>
<td>6DH3-2</td>
<td>6DH2-2</td>
<td>6DH8-2</td>
<td>6DH8-2</td>
<td>6DH8-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHASSIS</th>
<th>COUGAR</th>
<th>PANTERA</th>
<th>EL TIGRE 5000</th>
<th>CHEETAH F/C</th>
<th>CHEETAH L/C</th>
<th>EL TIGRE 6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length w/Skis</td>
<td>cm 269.2</td>
<td>269.2</td>
<td>327.6</td>
<td>327.6</td>
<td>269.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(in.) 106</td>
<td>106</td>
<td>129</td>
<td>129</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Length w/o Skis</td>
<td>cm 243.8</td>
<td>243.8</td>
<td>302.2</td>
<td>302.2</td>
<td>243.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(in.) 96</td>
<td>96</td>
<td>119</td>
<td>119</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Height w/Windshield</td>
<td>cm 106.7</td>
<td>109.2</td>
<td>108.7</td>
<td>108.7</td>
<td>106.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(in.) 42</td>
<td>43</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Height w/o Windshield</td>
<td>cm 88.9</td>
<td>88.9</td>
<td>88.9</td>
<td>88.9</td>
<td>88.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(in.) 35</td>
<td>36</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Overall Width</td>
<td>cm 107.9</td>
<td>107.9</td>
<td>107.9</td>
<td>107.9</td>
<td>107.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(in.) 42.5</td>
<td>42.5</td>
<td>42.5</td>
<td>42.5</td>
<td>42.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANY</th>
<th>COUGAR</th>
<th>PANTERA</th>
<th>EL TIGRE 5000</th>
<th>CHEETAH F/C</th>
<th>CHEETAH L/C</th>
<th>EL TIGRE 6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curb Weight (approx.)</td>
<td>kg 226</td>
<td>238</td>
<td>238</td>
<td>238</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(lb) 497</td>
<td>524</td>
<td>524</td>
<td>524</td>
<td>497</td>
<td></td>
</tr>
<tr>
<td>Dry Weight (approx.)</td>
<td>kg 200</td>
<td>211</td>
<td>209</td>
<td>209</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(lb) 400</td>
<td>465</td>
<td>460</td>
<td>460</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Fuel Tank Capacity</td>
<td>(U.S. Gal) 26.5</td>
<td>26.5</td>
<td>26.5</td>
<td>26.5</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(U.S. qt) 7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Coolant Capacity</td>
<td>(U.S. qt) 2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(U.S. qt) 0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Chain Case Fluid Level</td>
<td>ml 236</td>
<td>236</td>
<td>236</td>
<td>236</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(fl oz) 8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Gasoline Octane (rating) Minimum</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Engine Oil</td>
<td>50:1 Injection</td>
<td>50:1 Injection</td>
<td>50:1 Injection</td>
<td>50:1 Injection</td>
<td>50:1 Injection</td>
<td></td>
</tr>
<tr>
<td>Chain Case Lubricant</td>
<td>Arctcol/Arctic Cat Chainlube</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grease Low Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taillight/Brakelight</td>
<td>p/n 0109-460</td>
<td>0109-460</td>
<td>0109-460</td>
<td>0109-460</td>
<td>0109-460</td>
<td></td>
</tr>
<tr>
<td>Headlight</td>
<td>p/n 0109-735</td>
<td>0109-735</td>
<td>0109-735</td>
<td>0109-735</td>
<td>0109-735</td>
<td></td>
</tr>
<tr>
<td>Drive Belt</td>
<td>p/n 0227-030</td>
<td>0227-030</td>
<td>0227-032</td>
<td>0227-032</td>
<td>0227-032</td>
<td></td>
</tr>
<tr>
<td>Ignition Timing***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.T.D.C. degree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ 6000 RPM</td>
<td>18</td>
<td>24</td>
<td>24</td>
<td>18</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.023</td>
<td>3.226</td>
<td>3.226</td>
<td>2.032</td>
<td>3.835</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.127</td>
<td>0.127</td>
<td>0.080</td>
<td>0.151</td>
<td>0.151</td>
<td></td>
</tr>
<tr>
<td>Gas/Oil Mixture (Break-In)</td>
<td>50:1</td>
<td>50:1</td>
<td>50:1</td>
<td>50:1</td>
<td>50:1</td>
<td></td>
</tr>
<tr>
<td>Gas/Oil Mixture (After Break-In)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Specifications subject to change without notice.
**Offset measurement given is when using special tool p/n 0644-003.
***See Main Jet chart.
****With the engine at operating temperature.
Break-In Procedure

The A.F.S. model engines require a short break-in period (1 tankful of fuel). Use a gas/oil mixture of 50:1 in conjunction with the oil injection system for break-in purposes. Also, the break-in main jets should be used during the break-in period. The same procedure should be followed after an engine is overhauled.

During break-in, a maximum of 1/2 throttle is recommended. However, brief full-throttle accelerations and variations in driving speed contribute to good engine break-in. Following the break-in period, the carburetor main jets should be changed in accordance with the Main Jet Chart.

Recommended Gasoline

The recommended gasoline to use is 88 minimum octane regular leaded or unleaded. Do not use gasolines containing either methanol or more than 5% ethanol.

- CAUTION -

Gasoline additives, gasohol, methanol alcohol, and white gas MUST NOT BE USED, they will eventually cause engine damage.

Recommended Oil

Both Arctco Injection Oil and Arctic Cat Injection Oil are recommended for all A.F.S. models. These oils are specially formulated to meet the lubrication requirements of the Arctic Cat injection system.

Genuine Parts

When replacement of parts is necessary, use only genuine Arctco/Arctic Cat parts. They are precision-made to ensure high quality and correct fit. Refer to the Illustrated Parts Manual (p/n 2254-354) for the correct part number, quantity, and description.

Summer Storage

Prior to storing the A.F.S. models for the summer, they must be properly serviced to prevent rusting and component deterioration. If a customer requests you to prepare the snowmobile for storage, use the following procedure:

1. Remove the seat cushion from the tunnel. Clean the seat cushion with a damp cloth and store in a dry place.

2. Clean the snowmobile thoroughly by hosing dirt, oil, grass, and other foreign matter from the skid frame, tunnel, hood, and belly pan. Allow the snowmobile to dry thoroughly. DO NOT get water into any part of the engine.

3. Place the rear of the snowmobile up on a jackstand. Remove the air intake silencer boots from the carburetors.

4. Start the engine and allow to idle. With the engine idling, spray engine preserver into the carburetors until the engine exhaust starts to smoke heavily, or until the engine starts to drop in rpm.

5. Install the intake silencer boots.

6. Drain fuel from the carburetor float bowls; then drain the fuel tank of all gasoline.

7. On the Cougar and Cheetah F/C models, remove the primer line from the T-fitting where it attaches to the fuel line. Place the end of the primer line into a small container of two-cycle oil and pump the primer until oil is seen in the line going to the intake manifold or carburetor(s). Install the primer line on the T-fitting.

8. Plug the hole in the muffler with a clean cloth.
9. With the ignition switch key in the OFF position:
 A. Disconnect the spark plug caps from the spark plugs and remove the spark plugs.
 B. Pour 29.5 ml (1 fl oz) of SAE #30 petroleum-based oil into each spark plug hole and pull
 the recoil handle slowly about 10 times.
 C. Install spark plugs and connect the spark plug caps.

10. Every three years or 2000 miles, drain the chain case lubricant by removing the chain-
 case cover and seal. Allow the lubricant to flow onto rags placed in the belly pan. Inspect
 chain, sprockets, chain tensioner, and pads for wear and the chain for proper tension. In-
 stall chain-case cover and seal and pour 236 ml (8 fl oz) of either Arctco Chainlube or
 Arctic Cat Chainlube into the filler hole.

11. Remove the hitch pin securing the clutch shield; then swing the clutch shield forward.
 Remove the drive belt from the driven pulley and drive clutch. Lay the belt on a flat surface
 or slide it into a cardboard sleeve to prevent warping or distortion during storage. Secure
 the clutch shield with hitch pin.

12. Apply light oil to the upper steering post bushing, pivot bushings of the ski frame, and
 plungers of the shock absorbers.

13. Lubricate the rear suspension and spindles with a low-temperature grease.

14. Tighten all nuts, bolts, and screws. Make sure rivets holding components together are tight.
 Replace all loose rivets. Care must be taken that all calibrated nuts and bolts are tightened
 to specifications.

15. On the liquid cooled models, fill the cooling system to within 2.5 cm (1 in.) of the filler cap
 with properly mixed coolant.

16. Lightly sand the bottom of the skis; then using black paint p/n 0652-004, paint the entire
 bottom of the skis.

17. Clean and polish the hood, console, and chassis with an automotive-type cleaner wax.
 DO NOT USE SOLVENTS OR SPRAY CLEANERS. THE PROPELLENT WILL DAMAGE THE
 FINISH.

18. If possible, store the snowmobile indoors. Raise the track off the floor by blocking up
 the rear end making sure the snowmobile is secure. Loosen the rear idler wheel adjusting
 bolts to decrease track tension. Cover with a machine cover or a heavy tarpaulin to protect
 it from dirt and dust. If the snowmobile must be stored outdoors, block the entire snowmo-
 bile off the ground making sure it is secure. Loosen the rear idler wheel adjusting bolts to
 decrease track tension. Cover with a machine cover or a heavy tarpaulin to protect it from
 dirt, dust, and rain.

NOTE: Avoid using a plastic cover as moisture will collect on the snowmobile causing
rusting.

Preparation After Storage

Taking the snowmobile out of summer storage and correctly preparing it for another season will
assure many miles and hours of trouble-free snowmobiling. Arctco recommends the following
procedure to prepare the snowmobile.

1. Clean the snowmobile thoroughly. Polish the exterior of the snowmobile using an automo-
 tive-type cleaner wax.

2. Clean all engine cooling fins and vents. Remove the cloth from the exhaust system.

3. Check all control wires and cables for signs of wear or fraying. Replace if necessary. Use
 cable ties or tape to route wires and cables away from hot or rotating parts.

4. Inspect the drive belt for cracks and tears. Check belt specifications. Replace if damaged
 or worn. If the old belt is worn but yet in a reasonable condition, keep it in the tool box
 as a spare in case of emergency. Install drive belt.

5. Examine the in-line fuel filter and replace if necessary. Fill the fuel tank with gasoline.

6. Fill the oil-injection tank with either Arctco Injection Oil or Arctic Cat Injection Oil.

7. On the liquid cooled models, check the coolant level and add properly mixed coolant as
 necessary. Clean the radiator.
8. Check brake lever travel, wear indicator/jam nut clearance, all controls, headlight, taillight, brakelight, ski alignment, ski wear-bars, rail wear-strips, and headlight aim; adjust or replace if necessary.

9. Place the seat cushion into position and secure with the snaps.

10. Adjust the carburetors, throttle cable, and choke cable.

11. Tighten all nuts, bolts, and screws making sure all calibrated nuts and bolts are tightened to specifications.

12. Lubricate the rear suspension and spindles with a low-temperature grease.

13. Check the spark plugs. Clean or replace as necessary.

14. Adjust track to the proper tension and alignment.
SECTION 2 — ENGINE

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Specifications</td>
<td>8</td>
</tr>
<tr>
<td>Removing Engine</td>
<td>9-11</td>
</tr>
<tr>
<td>Disassembling Engine</td>
<td></td>
</tr>
<tr>
<td>(Cougar & Cheetah F/C)</td>
<td>11-15</td>
</tr>
<tr>
<td>Disassembling Engine</td>
<td></td>
</tr>
<tr>
<td>(El Tigre, Cheetah L/C, & Pantera)</td>
<td>15-20</td>
</tr>
<tr>
<td>Cleaning and Inspecting Engine</td>
<td>20-23</td>
</tr>
<tr>
<td>Cylinder Head(s)</td>
<td>20-21</td>
</tr>
<tr>
<td>Cylinders</td>
<td>21</td>
</tr>
<tr>
<td>Piston Assembly</td>
<td>21-22</td>
</tr>
<tr>
<td>Crankcase</td>
<td>22</td>
</tr>
<tr>
<td>Crankshaft</td>
<td>22-23</td>
</tr>
<tr>
<td>Reed Valves</td>
<td>23</td>
</tr>
<tr>
<td>Measuring Critical Components</td>
<td>24-26</td>
</tr>
<tr>
<td>Cylinder Trueness</td>
<td>24</td>
</tr>
<tr>
<td>Piston Skirt/Cylinder Clearance</td>
<td>24</td>
</tr>
<tr>
<td>Piston-Ring End Gap</td>
<td>24</td>
</tr>
<tr>
<td>Piston Pin and Piston-Pin Bore</td>
<td>25</td>
</tr>
<tr>
<td>Connecting-Rod Small End</td>
<td>25</td>
</tr>
<tr>
<td>Crankshaft Runout</td>
<td>25-26</td>
</tr>
<tr>
<td>Assembling Engine</td>
<td></td>
</tr>
<tr>
<td>(Cougar & Cheetah F/C)</td>
<td>26-30</td>
</tr>
<tr>
<td>Assembling Engine</td>
<td></td>
</tr>
<tr>
<td>(El Tigre, Pantera, & Cheetah L/C)</td>
<td>31-37</td>
</tr>
<tr>
<td>Disassembling Axial Fan</td>
<td>38</td>
</tr>
<tr>
<td>Inspecting Axial Fan</td>
<td>38-39</td>
</tr>
<tr>
<td>Assembling Axial Fan</td>
<td>39</td>
</tr>
<tr>
<td>Checking Axial Fan-Belt Tension</td>
<td>39</td>
</tr>
<tr>
<td>Adjusting Axial Fan-Belt Tension</td>
<td>40</td>
</tr>
<tr>
<td>Pressure Testing Engine</td>
<td>40-41</td>
</tr>
<tr>
<td>Installing Engine</td>
<td>41-43</td>
</tr>
<tr>
<td>Liquid Cooling System</td>
<td>43</td>
</tr>
<tr>
<td>Inspecting Thermostat</td>
<td>43</td>
</tr>
</tbody>
</table>
Engine Specifications

<table>
<thead>
<tr>
<th>Engine Specifications</th>
<th>CHEETAH F/C</th>
<th>EL TIGRE 5000</th>
<th>EL TIGRE 6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Model</td>
<td>AM50A3</td>
<td>AH44L4</td>
<td>AA53L2</td>
</tr>
<tr>
<td>No. of Cylinders</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Engine Lubrication</td>
<td>Oil Injection</td>
<td>Oil Injection</td>
<td>Oil Injection</td>
</tr>
<tr>
<td>Starter System</td>
<td>Recoil</td>
<td>Recoil</td>
<td>Recoil</td>
</tr>
<tr>
<td>Bore x Stroke</td>
<td>mm</td>
<td>(in.)</td>
<td>(in.)</td>
</tr>
<tr>
<td></td>
<td>70 x 65</td>
<td>(2.756 x 2.559)</td>
<td>68 x 60</td>
</tr>
<tr>
<td>Displacement</td>
<td>cc</td>
<td>(cu in.)</td>
<td>(cu in.)</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>(30.5)</td>
<td></td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>6.4:1</td>
<td></td>
<td>6.8:1</td>
</tr>
<tr>
<td>Piston-Ring End</td>
<td>mm</td>
<td>(in.)</td>
<td>(in.)</td>
</tr>
<tr>
<td>Gap Range</td>
<td>0.20-0.83</td>
<td>(0.008-0.033)</td>
<td>0.20-0.83</td>
</tr>
<tr>
<td>Piston-Fring/Cylinder</td>
<td>mm</td>
<td>(in.)</td>
<td>(in.)</td>
</tr>
<tr>
<td>Clearance Range</td>
<td>0.084-0.15</td>
<td>(0.0033-0.006)</td>
<td>0.076-0.15</td>
</tr>
<tr>
<td>Piston Pin Diameter</td>
<td>mm</td>
<td>(in.)</td>
<td>(in.)</td>
</tr>
<tr>
<td>Range</td>
<td>17.995-18.000</td>
<td>(0.7085-0.7087)</td>
<td>17.995-18.000</td>
</tr>
<tr>
<td>Piston Pin Diameter</td>
<td>mm</td>
<td>(in.)</td>
<td>(in.)</td>
</tr>
<tr>
<td>Diameter Range</td>
<td>17.998-18.006</td>
<td>(0.7086-0.7089)</td>
<td>17.998-18.006</td>
</tr>
<tr>
<td>Connecting-Rod Small</td>
<td>mm</td>
<td>(in.)</td>
<td>(in.)</td>
</tr>
<tr>
<td>End Diameter Range</td>
<td>23.00-23.01</td>
<td>(0.9056-0.9059)</td>
<td>23.00-23.01</td>
</tr>
<tr>
<td>Crankshaft End Play</td>
<td>mm</td>
<td>(in.)</td>
<td>(in.)</td>
</tr>
<tr>
<td>Range</td>
<td>0.05-0.10</td>
<td>(0.002-0.004)</td>
<td>0.05-0.10</td>
</tr>
<tr>
<td>Crankshaft Runout (max.)</td>
<td>mm</td>
<td>(in.)</td>
<td>(in.)</td>
</tr>
<tr>
<td>(Total Indicator Reading)</td>
<td>0.05</td>
<td>(0.002)</td>
<td>0.05</td>
</tr>
<tr>
<td>Cylinder Trueness (max.)</td>
<td>mm</td>
<td>(in.)</td>
<td>(in.)</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>(0.0039)</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Removing Engine

NOTE: Except for step 3, procedures designated "A" are for the Cougar and Cheetah F/C models; procedures designated "B" are for the El Tigre, Pantera, and Cheetah L/C models. On step 3, procedure "A" is for the Cougar, Cheetah F/C, Pantera, and El Tigre 5000.

1. Open the clutch shield; then remove the drive belt.

2. Remove the clutch (see Removing Drive Clutch section).

NOTE: On the El Tigre 6000 and Cheetah L/C it will be necessary to remove the torque link.

3. A. Remove the three springs securing the pulse charger to the exhaust manifold; then remove the springs securing the pulse charger to the front end and remove the pulse charger.

 B. Remove the three springs securing each expansion chamber to the exhaust manifold; then remove the two springs securing each expansion chamber to the muffler. Remove the springs securing the expansion chambers to the front end and remove the expansion chambers.

 Fig. 2-1

5. Disconnect the main wiring harness, the ignition coil wiring harness, and the spark-plug caps.

6. Disconnect the impulse hose from the crankcase.

7. Loosen the flange clamp securing each carburetor to its flange; then remove the carburetors.

 Fig. 2-2

8. Disconnect the oil-injection cable from the injection pump. Disconnect the oil-supply hose from the pump and plug the hose to prevent oil drainage.

 Fig. 2-4

Remove the four bolts and lock washers securing the recoil; then remove recoil from the engine. Leave the recoil in the engine compartment.
9. B. Loosen the clamp securing the hose to the water-intake manifold; then remove the hose allowing the coolant to drain into a clean container.

10. B. Loosen the clamp securing the hose to the thermostat cap; then loosen the clamp securing the supply hose to the heat-exchanger end cap. Remove the two hoses from their fittings.

11. B. Remove the temperature-gauge sender from the thermostat housing. While loosening the sender unit nut, secure the sender unit adaptor nut to prevent it from turning. If the adaptor is allowed to turn, the temperature gauge will be ruined.

12. Remove the two cap-lock screws securing the rear of the engine plate to the front end. Account for two female mounts and cup washers.

13. Remove the two cap-lock screws securing the engine support to the front end. Account for two female mounts and cup washers.

14. Lift the engine w/plate assembly out of the engine compartment.

15. Remove the four bolts and lock washers securing the plate assembly to the engine; then separate engine and plate assembly.

NOTE: Remove the hood cable.
Disassembling Engine
(Cougar-Cheetah F/C)

1. Remove the nuts securing the exhaust manifold; then remove the exhaust manifold. Account for two gaskets.

2. Remove the 15 bolts, lock washers, and washers securing the top and exhaust-side cooling shrouds.

3. Disconnect the spark-plug caps from the spark plugs.

4. Loosen the clamps; then pull the two oil-injection hoses from their fittings on the intake insulator blocks. Remove the four nuts that secure the carburetor flanges and insulator blocks to the cylinders and remove. Remove the flanges and insulator blocks and discard all intake gaskets.

5. Remove the intake cooling shroud from the engine. Remove the intake gaskets from behind the shroud and discard.

6. Lift the upper cooling shroud from the engine. Slide the exhaust-side cooling shroud off the exhaust-manifold studs. Account for the two exhaust gaskets behind the shroud.
7. Using a spanner wrench to secure the crankshaft, remove the three bolts and lock washers that secure the starter pulley and fan pulley to the flywheel; then remove the starter pulley.

Fig. 2-14

8. Using a screwdriver, pry the fan pulley free of the flywheel and remove.

Fig. 2-15

9. Temporarily install the starter pulley on the flywheel with three bolts. Using a spanner wrench to secure the crankshaft, loosen and remove the flywheel nut and washers. Remove the starter pulley from the flywheel.

Fig. 2-16

10. Remove the six nuts securing the fan housing to the magneto backing plate and slide the fan housing free of the engine. Remove (if in need of replacement) the CDI unit and ignition coil from the fan housing.

NOTE: For further servicing of the axial fan components, see page 38.

Fig. 2-17

11. Install a protective cap onto the end of the crankshaft.

NOTE: A protective cap can be made by welding a 3 mm (1/8 in.) plate on one side of a spare flywheel nut.

CAUTION

To prevent damage to the crankshaft, thread a protective cap onto the crankshaft. The puller must bottom on the cap and not on the crankshaft. Also, do not thread puller bolts more than 12.7 mm (1/2 in.) into the flywheel. Damage to the coils may result.

12. Using the Arctic Flywheel Puller or suitable equivalent, remove the flywheel from the crankshaft by tightening the puller bolt, striking the head of the puller bolt with a brass hammer, and tightening again. Repeat procedure until the flywheel is free. Account for the key in the end of the crankshaft.
NOTE: To ensure the cleanliness of the flywheel magnets, place the flywheel (with the magnets facing upward) on a clean bench.

13. Scribe a line on the stator plate and crankcase to aid in assembly; then remove the two screws, lock washers, and washers securing the stator plate to the crankcase.

NOTE: The two stator plate screws have had LOCTITE applied to the threads during assembly. Before removing them, apply a sharp blow to the head of each screw to break the LOCTITE loose. If this isn’t done, the screws can be very difficult to remove.

14. Loosen the screw that secures the wire retainer bracket. Remove the wiring grommet from the magneto case and remove the stator plate from the engine.

15. Using an impact screwdriver, remove the eight screws securing the magneto case to the crankcase. Using a plastic hammer, tap on the backside of the magneto case to free it from the crankcase.

16. Remove the two bolts, lock washers, and washers securing the oil-injection pump; then remove the pump, retainer, shim, and gear. Account for two gaskets.
17. Remove the spark plugs.

18. Remove the 12 nuts securing the cylinder heads to the cylinders. Remove the heads and account for two gaskets.

19. Remove the four cylinder base nuts from each cylinder. Using a rubber hammer, gently tap on the side of each cylinder and remove from crankcase by lifting straight up off the studs. Remove and discard gaskets.

20. Using a felt-tipped marker, mark an M on the MAG-side cylinder and piston and a P on the PTO-side cylinder and piston.

CAUTION
When removing a cylinder, make sure to support the piston so it will not be damaged.

21. Remove the PTO-side piston-pin circlip from the PTO-side piston; remove the MAG-side piston-pin circlip from the MAG-side piston.

NOTE: For proper assembly, keep all MAG-side components and all PTO-side components separated. Assemble them on their proper sides.

22. Using the Arctic Piston-Pin Puller (p/n 0144-003), remove the piston pins from both pistons.

23. Lift the pistons clear of the connecting rods and remove the small end connecting-rod bearings; then remove the piston rings. Keep each piston with its rings; keep each piston, pin, and bearing together as a set.
Disassembling Engine
(El Tigre-Cheetah L/C-Pantera)

NOTE: Procedures designated "A" are for the Pantera and El Tigre 5000 engines; procedures designated "B" are for the El Tigre 6000 and Cheetah L/C engines.

1. A. Remove the four nuts and lock washers securing the exhaust manifold; then slide the exhaust manifold off its studs. Account for two gaskets.

Fig. 2-30

B. Remove the four nuts securing the two expansion chamber flanges to the cylinders. Remove the flanges and account for exhaust gaskets.

2. Remove the seven screws securing the magneto-case cover; then remove cover. Account for a wiring clamp.

Fig. 2-31

3. Using a spanner wrench to secure the flywheel, remove the three bolts from the starter pulley. Remove the starter and belt pulleys; then temporarily install just the starter pulley. Secure the pulley with three bolts.
4. Using a spanner wrench to secure the flywheel, remove the flywheel nut, lockwasher, and flat washer.

5. Install a protective cap onto the end of the crankshaft.

NOTE: A protective cap can be made by welding a 3 mm (1/8 in.) plate on one side of a spare flywheel nut.

6. Using the Arctic Flywheel Puller or suitable equivalent, remove the flywheel from the crankshaft by tightening the puller bolt, striking the head of the puller bolt with a brass hammer, and tightening again. Repeat procedure until the flywheel is free. Account for the key in the end of the crankshaft.

NOTE: The flywheel will not clear the water pump pulley, either remove the water pump pulley or loosen the water pump bolts and adjust the pump to attain adequate clearance.

CAUTION

To prevent damage to the crankshaft, thread a protective cap onto the crankshaft. The puller must bottom on the cap and not on the crankshaft. Also, do not thread puller bolts more than 12.7 mm (1/2 in.) into the flywheel. Damage to the coils may result.
NOTE: To ensure the cleanliness of the flywheel magnets, place the flywheel (with the magnets facing upward) on a clean bench.

8. Scribe a line on the stator plate and magneto case to aid in assembly; then remove the two screws, lock washers, and washers securing the stator plate. Remove the wiring harness screw and clamp.

11. Using a rubber or plastic-tipped hammer, gently tap the magneto case until it separates from the crankcase; then remove the magneto case with water pump and stator plate.

NOTE: Step 12 should only be performed if there is a problem with either the water pump assembly or the magneto case.

12. Remove the five bolts, lock washers, and washers securing the water pump to the magneto case; then remove water pump.

13. Remove the three bolts, lock washers, and washers securing the thermostat cap; then remove cap, gasket, and thermostat.

14. Remove the spark plugs.

15. A. Remove the eight bolts, lock washers, flat washers and the four nuts securing the head; then using a rubber hammer, gently tap the head until it separates from the cylinders and remove the head.
B. Remove the four bolts and washers that secure the thermostat manifold to the cylinder heads. Remove the manifold and discard the gaskets.

16. B. Remove the eight bolts and O-rings securing each head; then using a rubber hammer, gently tap each head until it separates from the cylinder. Account for two large O-rings beneath each head.

17. Remove the four bolts, lock washers, and washers securing the water-intake manifold and remove the manifold from the cylinders. Account for two gaskets.

18. Pull the oil-injection lines from each cylinder nozzle.

19. Remove the two bolts, lock washers, and washers securing the oil-injection pump to the crankcase. Remove the injection pump from the crankcase along with the retainer and gaskets. Discard the old gaskets. Using a pair of needle nose pliers, remove the shaft from the crankcase. Account for the shim.
20. Remove the eight nuts, lock washers, and washers and four flange nuts securing the cylinders to the crankcase; then using a rubber hammer, gently tap the cylinders and remove from the crankcase by lifting them straight up off their studs. Account for two gaskets.

21. Remove the four screws and lock washers securing the reed-valve assemblies to the cylinders; then remove the reed-valve assemblies. Account for two gaskets.

22. Remove the PTO-side piston-pin circlip from the PTO-side piston; remove the MAG-side piston-pin circlip from the MAG-side piston.

23. Using the Arctic Piston Pin Puller (p/n 0144-003), remove the piston pins from both pistons.

NOTE: For proper assembly, keep all MAG-side components and all PTO-side components separated. Assemble them on their proper sides.
24. Lift the pistons clear of the connecting rods and remove the small-end connecting-rod bearings; then remove the piston rings. Keep each piston with its rings; keep each piston, pin, and bearing together as a set.

NOTE: Place rubber bands over the connecting rods and around the cylinder studs. This will keep the connecting rods from damaging the crankcase.

25. Using an impact driver, remove the four screws securing the plate to the crankcase; then remove the plate.

26. Remove the 16 bolts, lock washers, and washers securing the crankcase halves. Note the position of the different-sized bolts.

27. Using a rubber or plastic-tipped hammer, tap on the side of the crankcase until the two halves start to separate. Remove the rubber bands and lift the top half of the crankcase off the bottom half. Grasp the connecting rods as the top half of the crankcase is removed. Do not allow them to drop onto the sealing surface of the bottom case half.

CAUTION

DO NOT drive any tool between halves to separate the crankcase. Damage to the sealing surfaces will result.

28. Lift the crankshaft free from the crankcase half, and slide the crankshaft oil seals off the crankshaft. Account for the C-ring. Remove the bearing dowel pins.

Cleaning and Inspecting Engine

NOTE: Whenever a part is worn excessively, cracked, defective, or damaged in any way, replacement is necessary.

CYLINDER HEAD(S)

1. Using a non-metallic carbon removal tool, remove any carbon buildup from the combustion chambers being careful not to nick, scrape, or damage the combustion chambers or the sealing surfaces.

2. Inspect the spark-plug holes for any damaged threads. Repair damaged threads using a "heli-coil" insert.
3. Place the cylinder head(s) on a surface plate covered with #400 grit wet-or-dry sandpaper. Using light pressure, move the cylinder head in a figure eight motion. Inspect the sealing surface for any indication of high spots. A high spot can be noted by a bright metallic finish. Correct any high spots before assembly by continuing to move the cylinder head in a figure eight motion until a uniform bright metallic finish is attained.

![Fig. 2-55](image1)

CAUTION

Water or cleaning solvent must be used in conjunction with the wet-or-dry sandpaper or damage to the sealing surface may result.

PISTON ASSEMBLY

1. Using a non-metallic carbon removal tool, remove carbon buildup from the dome of each piston.

2. Using an old piston ring as a tool, snap the ring in two pieces. Grind one end of the ring at a 45 degree angle and to a sharp edge. Clean the ring-groove of carbon using the ring. Be sure to position the ring with its tapered side up.

CAUTION

Improper cleaning of the ring grooves by the use of the wrong type of ring-groove cleaner will result in severe damage to the piston.

3. Inspect each piston for cracks in the piston pin and skirt areas.

4. Inspect each piston for seizure marks or scuffing. Repair with #400 grit wet-or-dry sandpaper and water or honing oil.
NOTE: If scuffing or seizure marks are too deep to correct with the sandpaper, it may be necessary to replace the piston.

5. Inspect the perimeter of each piston for signs of excessive "blowby". Excessive "blowby" indicates worn piston rings or an out-of-round cylinder.

CRANKCASE
1. Wash the crankcase halves in cleaning solvent.

NOTE: Before washing the crankcase halves, make sure the bearing dowel pins have been removed and accounted for.

2. Inspect crankcase halves for scoring, pitting, scuffing, or any imperfections in the casting.

3. Inspect all threaded areas for damaged or stripped threads.

4. Inspect the bearing areas for cracks or excessive bearing movement. If evidence of excessive bearing movement is noted, repair by peening the bearing area in a pinking (saw tooth) pattern using a center punch.

5. Inspect the bearing dowel pins for wear.

6. Inspect the sealing surfaces of the crankcase halves for trueness by placing each crankcase half on a surface plate covered with #400 grit wet-or-dry sandpaper. Using light pressure, move each half in a figure eight motion. Inspect the sealing surfaces for any indication of high spots. A high spot can be noted by a bright metallic finish. Correct any high spots by continuing to move the half in a figure eight motion until a uniform bright metallic finish is attained.

CRANKSHAFT
1. Wash the crankshaft w/bearings in cleaning solvent.

2. Inspect the bearings for wear, scoring, scuffing, damage, or discoloration. Rotate the bearings. Bearings must rotate freely and must not bind or feel rough. If any abnormal condition is noted, replace the bearing.

NOTE: To remove crankshaft bearings, use either Bearing Puller Kit (p/n 0144-080) or (p/n 0144-302). To install new bearings, squirt oil into the bearings; then holding the bearing with a pair of pliers and using a propane torch, heat the inner race. Keep the flame moving on the inner race, never allowing the flame to remain on one area for
any length of time. Heat the inner race until you note slight smoke coming from the bearing; then op the bearing into position over the end of the ankshaft. Make sure to position the dowel-pin hole in the outer race correctly so it will align with the dowel-pin in the crankcase.

Fig. 2-60

Fig. 2-61

3. Inspect the reed stopper height. Using a caliper, measure the distance from the seat to the bottom outer tip edge of the stopper. Measurement must not exceed specifications. If measurements are not within specifications, either bend or replace the reed stopper.

<table>
<thead>
<tr>
<th>Reed Stopper Height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>440 L/C</td>
</tr>
<tr>
<td>mm</td>
</tr>
<tr>
<td>8.0 ± 0.5</td>
</tr>
<tr>
<td>in.</td>
</tr>
<tr>
<td>0.315 ± 0.019</td>
</tr>
</tbody>
</table>

Fig. 2-62

3. Inspect the connecting-rod bearings by rotating them. Bearings must rotate freely and must not bind or feel rough. If a connecting-rod bearing must be replaced, the connecting rod and crank pin must also be replaced.

NOTE: Lubricate bearings thoroughly prior to assembly.

CAUTION

DO NOT overheat the bearing.

Fig. 2-63

4. Inspect the reed-to-seat clearance. Using a feeler gauge, measure the clearance. Clearance must be less than 0.20 mm (0.008 in.). If clearance is not within specifications, replace the reed valve.

REED VALVES
1. Inspect the seats for cracks or wear.
2. Inspect the reeds for cracks.
Measuring Critical Components

CYLINDER TRUENESS
1. Measure each cylinder in the three locations shown from front to back and side to side for a total of six readings. The trueness (out-of-roundness) is the difference between the highest and lowest reading. Maximum trueness (out-of-roundness) must not exceed specifications listed.

Fig. 2-64

<table>
<thead>
<tr>
<th>CYLINDER TRUENESS LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
</tr>
<tr>
<td>0.1</td>
</tr>
</tbody>
</table>

PISTON SKIRT/CYLINDER CLEARANCE
1. Measure each cylinder front to back about 2.5 cm (1 in.) from the bottom of each cylinder.

2. Measure the corresponding piston diameter at a point 1 cm (0.394 in.) above the piston skirt at a right angle to the piston-pin bore. Subtract this measurement from the measurement in step 1. The difference (clearance) must be within specifications.

Fig. 2-66

<table>
<thead>
<tr>
<th>PISTON SKIRT/CYLINDER CLEARANCE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
</tr>
<tr>
<td>500 F/C</td>
</tr>
<tr>
<td>530 L/C</td>
</tr>
<tr>
<td>440 L/C</td>
</tr>
</tbody>
</table>

PISTON-RING END GAP
1. Place each piston ring in the wear portion above the exhaust port of its respective cylinder. Use the piston to position each ring squarely in each cylinder.

2. Using a feeler gauge, measure each piston-ring end gap. Acceptable ring end gap must fall within specifications.

Fig. 2-67

<table>
<thead>
<tr>
<th>PISTON-RING END GAP RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
</tr>
<tr>
<td>0.20-0.83</td>
</tr>
</tbody>
</table>
PISTON PIN AND PISTON-PIN BORE

1. Measure the piston pin diameter in several places. If any measurement varies by more than 0.02 mm (0.001 in.), the piston pin and bearing must be replaced as a set.

Fig. 2-68

<table>
<thead>
<tr>
<th>PISTON PIN DIAMETER RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
</tr>
<tr>
<td>17.995-18.000</td>
</tr>
</tbody>
</table>

2. Insert a snap gauge into each piston-pin bore; then remove the gauge and measure it with a micrometer. Diameter must be within specifications. Take two measurements to ensure accuracy.

Fig. 2-69

<table>
<thead>
<tr>
<th>PISTON-PIN BORE DIAMETER RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
</tr>
<tr>
<td>530 L/C</td>
</tr>
<tr>
<td>500 F/C</td>
</tr>
<tr>
<td>140 L/C</td>
</tr>
</tbody>
</table>

CONNECTING-ROD SMALL END

1. Insert a snap gauge into each connecting-rod small end bore; then remove the gauge and measure it with a micrometer. Diameter must be within specifications.

Fig. 2-70

<table>
<thead>
<tr>
<th>CONNECTING-ROD SMALL END DIAMETER RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
</tr>
<tr>
<td>23.00-23.01</td>
</tr>
</tbody>
</table>

CRANKSHAFT RUNOUT

1. Using a set of V-blocks, support the crankshaft on a surface plate.

NOTE: The V-blocks should support the crankshaft on the outer bearings.

2. Mount a dial indicator and base on the surface plate. Position the indicator contact point against the crankshaft distance A (PTO end) from the crankshaft counterweight. Zero the indicator and rotate the crankshaft slowly. Note the amount of crankshaft runout (total indicator reading).

<table>
<thead>
<tr>
<th>500 F/C</th>
<th>mm</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>41.3</td>
<td>1.62</td>
</tr>
<tr>
<td>B</td>
<td>41.3</td>
<td>1.62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>530-440 L/C</th>
<th>mm</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>44.5</td>
<td>1.75</td>
</tr>
<tr>
<td>B</td>
<td>44.5</td>
<td>1.75</td>
</tr>
</tbody>
</table>

3. Position the indicator contact point against the crankshaft distance B (MAG end) from the crankshaft counterweight. Zero the indicator and rotate the crankshaft slowly. Note the amount of crankshaft runout (total indicator reading).
Fig. 2-71

<table>
<thead>
<tr>
<th>CRANKSHAFT RUNOUT (Total Indicator Reading)</th>
<th>mm</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>0.05</td>
<td>0.002</td>
</tr>
</tbody>
</table>

4. If runout exceeds specifications at either end, the crankshaft must be either straightened or replaced.

Assembling Engine (Cougar-Cheetah F/C)

- **CAUTION**: If the bearings are not properly seated during assembly, the crankcase halves will not bolt together tightly and engine damage will result.

3. Apply oil to the crankshaft bearings; then install the crankshaft into the lower crankcase half. Be sure the alignment hole in each bearing is positioned over its respective dowel pin in the crankcase; then seat the crankshaft.

4. Apply a thin coat of silicone sealer to the lower crankcase sealing surface; then lay a length of #50 cotton thread next to the inner edge of and along the full length of the lower crankcase half.

5. Assemble the crankcase halves making sure the dowel pins are properly positioned; then apply LOCTITE LOCK N' SEAL to the crankcase bolts.

6. Install the 16 crankcase bolts, lock washers, and washers making sure the proper-sized bolts are in the proper holes. Tighten in three steps the 8 mm bolts to 1.8-2.2 kg-m (13-16 ft-lb) and the 6 mm bolts to 0.8-1.2 kg-m (6-9 ft-lb) using the pattern shown.
NOTE: Secure connecting rods with rubber bands on the cylinder studs.

Install the piston rings on each piston so the letter on the top or inclined surface of each ring faces the dome of the piston.

Fig. 2-75

CAUTION
Incorrect installation of the piston rings will result in engine damage.

Apply oil to the connecting-rod small end bearings; then install the small-end bearings.

9. Place each piston over the connecting rod so the arrow on the piston dome points toward the exhaust port; then secure with a piston pin.

NOTE: Apply oil to the piston pin before installing.

10. Install the circlips so the open end is directed either down or up.

Fig. 2-76

CAUTION
Make sure circlips are firmly seated and the open end is directed either down or up before continuing with assembly.

11. Apply a thin coat of silicone sealer to both sides of each cylinder-base gasket; then install gaskets on the crankcase.

12. Rotate each piston ring until the ring ends are properly positioned on either side of the ring keeper; then apply oil to the piston assemblies and cylinder bores. Remove the rubber bands from the connecting rods.

NOTE: Apply a generous amount of oil to the surface of the pistons, rings, and cylinder bores.

Fig. 2-77

13. In turn on each piston, place a piston holder (or suitable substitute) beneath the piston skirt and square the piston in respect to the crankcase; then using a ring compressor or the fingers, compress the rings and slide the cylinder over the piston. Remove the piston holder and seat the cylinder firmly onto the crankcase.

Fig. 2-78
14. Install the four cylinder base nuts, flat washers, and lock washers. **DO NOT TIGHTEN AT THIS TIME.**

15. Temporarily install the exhaust manifold and secure with four nuts and lock washers to "square" the cylinders. Torque the manifold nuts to 1.8-2.2 kg-m (13-16 ft-lb).

16. With the exhaust manifold in place, torque the cylinder-base nuts in three steps to 3.0-4.0 kg-m (22-29 ft-lb) using a crisscross pattern. Remove the exhaust manifold.

17. Place each head w/gasket into position and install the twelve nuts, washers, and lock washers. Tighten in three steps to 2.0-2.5 kg-m (14.5-18 ft-lb) using the torque pattern shown.

18. Install the spark plugs and tighten to 2.5-2.8 kg-m (18-20 ft-lb).

19. Apply a thin coat of silicone sealer to both sides of the oil-injection pump gaskets. In order, install the gear, shim, gasket, and oil-injection pump. Secure with two bolts, lock washers, and washers. Tighten and then torque to 0.7 kg-m (5 ft-lb).

20. Place the magneto case into position and secure with eight screws coated with LOC-TITE LOCK N' SEAL. Tighten to 0.35 kg-m (31 in-lb).

21. Insert the stator plate wiring harness through the magneto case opening and place the stator plate into position. Align the stator plate timing marks and secure with two screws (coated with LOC-TITE LOCK N' SEAL), lock washers, and washers.
22. Position the wiring harness clamp over wiring harness and secure with screw. Install grommet.

23. Install the flywheel key in the crankshaft keyway and slide the flywheel onto the crankshaft making sure the keyways match. Install the flat washer, lock washer, and flywheel nut. Apply LOCTITE LOCK N' SEAL to the crankshaft threads before installing the nut.

24. Place the fan housing into position and secure with five nuts. Torque the six nuts to 1.5-1.9 kg-m (11-14 ft-lb).

25. Temporarily install the starter pulley on the flywheel with three bolts. Using a spanner wrench to secure the flywheel, torque the flywheel nut to 9.0-11.0 kg-m (65-79 ft-lb).

26. Install an intake gasket lightly coated with silicone sealer on each cylinder. Install an exhaust gasket on each cylinder with its metal side positioned towards the cylinder exhaust flange. Install the cooling shrouds and secure with 15 screws, lock washers, and washers.

27. Install the outer intake gasket, coated lightly with silicone sealer on each cylinder next to the cooling shroud. Slide the gaskets, insulator blocks, and carburetor flanges into position on each cylinder. Secure with nuts and washers. Torque the four nuts to 1.8-2.2 kg-m (13-16 ft-lb) using a crisscross pattern.

28. Slide the two oil-injection hoses onto the fittings on the insulator blocks. Be certain all hose clamps are in place; then tighten the screw clamps.
29. Pressure test the engine (see Pressure Testing Engine section).

30. Remove the starter pulley. Position the fan belt onto the fan-belt drive pulley; then place the fan-belt drive pulley and the starter pulley into position on the flywheel. Align one hole in the flywheel with one of those in the starter pulley and belt pulley and start a bolt finger-tight only.

31. Rotate the starter and drive pulleys counterclockwise, causing the pulleys to pivot on the single bolt installed. As the pulleys pivot, watch for the remaining two holes in the pulleys to align with those in the flywheel. Install the remaining two bolts and tighten evenly until the belt pulley is firmly seated against the flywheel. Torque the three bolts to 0.8-1.0 kg-m (6-7 ft-lb).

32. If removed, secure the CDI unit and external coil to the fan housing. Torque the bolts to 0.8-1.0 kg-m (6-7 ft-lb). Connect all wires following the color code of each. Attach the two spark plug high tension leads to the spark plugs.

Fig. 2-88

Fig. 2-89

33. Install an exhaust gasket on each cylinder with the metal side positioned out and away from the cooling shroud. Slide the exhaust manifold into position, securing with four nuts and lock washers. Torque the four nuts in three steps 1.5-1.9 kg-m (11-14 ft-lb).

Fig. 2-90

Fig. 2-91

NOTE: Affirm proper fan belt tension. Adjust as necessary.
Assembling Engine
(El Tigre-Pantera-Cheetah L/C)

NOTE: Procedures designated “A” are for the 440 L/C engine; procedures designated “B” are for the 530 engine.

NOTE: When use of a silicone sealer is indicated, use either RTV Silicone Sealant or Three Bond Sealant.

1. Install the C-ring into the lower crankcase half.

2. Lubricate the inner lips of the crankshaft oil seals with grease; then slide the seals onto the crankshaft making sure the spring side of each seal faces the center of the crankshaft.

3. Apply oil to the crankshaft bearings; then install the crankshaft into the lower crankcase half. Be sure the alignment hole in each bearing is positioned over its respective dowel pin in the crankcase; then seat the crankshaft.

CAUTION
If the bearings are not properly seated during assembly, the crankcase halves will not bolt together tightly and engine damage will result.

4. Apply a thin coat of silicone sealer to the lower crankcase sealing surface; then lay a length of #50 cotton thread next to the inner edge of and along the full length of the lower crankcase half.

5. Assemble the crankcase halves; then apply LOCTITE LOCK N' SEAL to the crankcase bolts.

6. Install the 16 crankcase bolts, lock washers, and washers securing the crankcase halves making sure the proper-sized bolts are in the proper holes. Tighten in three steps the 8 mm bolts to 1.8-2.2 kg-m (13-16 ft-lb) and the 6 mm bolts to 0.8-1.2 kg-m (6-9 ft-lb) using the pattern shown.
NOTE: Secure the connecting rods with rubber bands on the cylinder studs.

7. Place the plate into position on the crankcase; then apply LOCTITE LOCK N' SEAL to the four screws and tighten securely.

8. Install the oil-injection pump drive gear shaft into the crankcase. Position the shim on the outer end of the shaft. Apply a thin coat of silicone sealer to both sides of both gaskets and install the gasket, retainer, gasket, and oil-injection pump. Secure with two bolts and washers. Tighten the two bolts to 0.7 kg-m (5 ft-lb).

9. Install the piston rings on each piston so the letter on the top or inclined surface of each ring faces the dome of the piston.

10. Apply oil to the connecting-rod small end bearings; then install the small-end bearings.

11. Place each piston over the connecting rod so the arrow on each piston will point toward the exhaust port; then secure with a piston pin.

NOTE: The arrow is found up inside the piston.

12. Install the circlips so the open end is directed down.

CAUTION
Incorrect installation of the piston rings will result in engine damage.

CAUTION
Make sure circlips are firmly seated and the open end is directed down before continuing with assembly.
13. Apply a thin coat of silicone sealer to both sides of each cylinder-base gasket; then install each gasket.

14. Rotate each piston ring until the ring ends are properly positioned on either side of the ring keeper; then apply oil to the piston assemblies and cylinder bores. Remove the rubber bands from the connecting rods.

15. Place the reed-valve assemblies w/new gaskets into position on the cylinders; then apply LOCTITE LOCK N' SEAL to the four screws and lock washers and tighten securely.

16. In turn on each cylinder, place a piston holder (or suitable substitute) beneath the piston skirt and square the piston in respect to the crankcase; then using a ring compressor or the fingers, compress the rings and slide the cylinder over the piston. Remove the piston holder and seat the cylinder firmly onto the crankcase.

CAUTION

When installing the cylinders, care must be taken not to bend or damage the reed stopper.

17. Secure each cylinder by installing the six nuts, four washers, and lock washers. DO NOT TIGHTEN AT THIS TIME.

18. Apply a thin coat of silicone sealer to both sides of the water-intake manifold gaskets; then place gaskets and manifold into position and secure with four bolts, lock washers, and washers. Tighten to 0.7-1.0 kg-m (5-7 ft-lb) using a crisscross pattern.
19. With the water manifold torqued, secure the cylinders by tightening the 8 mm cylinder base nuts to 1.8-2.2 kg-m (13-16 ft-lb) and the 10 mm nuts to 3.0-4.0 kg-m (22-29 ft-lb). Torque all the nuts in three steps using the pattern shown.

20. A. Apply a very thin coat of silicone sealer to each head gasket; then place head w/gaskets into position and secure with eight bolts, lock washers, and washers and four nuts, lock washers, and washers. Tighten in three steps to 3.0-4.0 kg-m (22-29 ft-lb) using the pattern shown. Install the spark plugs and tighten to 2.5-2.8 kg-m (18-20 ft-lb).

CAUTION

Make sure the two large water passage holes in the gaskets are on the intake side of the cylinders. If the gaskets are improperly installed, severe engine damage will result.

B. Position the O-rings into position on the top of each cylinder.

NOTE: If reusing old O-rings and they are slightly stretched, shrink the O-rings by cooling them (in a refrigerator or in the snow) for a short period of time.
21. B. Set the cylinder heads in position. Check sealing surface first to make sure the surface is clean. Slide an O-ring onto each of the sixteen head bolts and start all the head bolts. DO NOT TIGHTEN AT THIS TIME.

22. B. Apply a thin coat of silicone sealer to the two thermostat housing gaskets. Place the gaskets and housing into position and secure with four bolts and washers. Torque the four bolts in a crisscross pattern to 0.7-1.0 kg-m (5-7 ft-lb).

NOTE: The thermostat housing bolts must be torqued before tightening the head bolts. This will allow the gasket surfaces of the head to align with the housing and prevent any coolant leakage.

23. B. Torque the head bolts in three steps to 2.0-2.5 kg-m (14.5-18 ft-lb) using the pattern shown.

24. Test the engine for air leaks (see Pressure Testing Engine section).

25. Apply a very thin coat of silicone sealer to both sides of the thermostat gasket; then place the thermostat, gasket, and housing into position. Secure with three bolts, lock washers, and washers.
26. Place the water pump, belt, and pulley into position in the magneto case; then secure the water pump to the magneto case with five bolts, lock washers, and washers.

27. Place the magneto case into position on the crankcase; then apply LOCTITE LOCK N' SEAL to the eight screws and tighten securely.

28. Slide the bypass hose onto the thermostat housing and secure with the clamp.

29. Place the CDI unit into position and secure with two bolts and washers.

30. Place the stator plate into position, align the marks made during disassembly, and secure the stator plate with two screws coated with LOCTITE LOCK N' SEAL, lock washers, and washers. Insert the wiring harness through the cutout and install the grommet; then place the wiring harness clamp into position and secure.

31. Install the key in the crankshaft and slide the flywheel onto the crankshaft making sure the keyways match.

32. Place the belt onto the drive pulley; then place the drive pulley and the starter pulley into position on the flywheel and secure with three bolts and lock washers.
33. Apply LOCTITE LOCK N' SEAL to the crankshaft threads; then install the washer, lock washer, and nut securing the flywheel. Using a spanner wrench, tighten the flywheel nut to 9.0-11.00 kg-m (65-79 ft-lb).

34. Check the belt deflection. Deflection must be less than 6 mm (1/4 in.) at midspan. If deflection is greater than specified, loosen the four bolts securing the water pump and adjust deflection by tightening the adjustment bolt on the magneto case. Secure the adjustment by tightening the four bolts.

35. Place the magneto-case cover into position and secure with seven screws.

36. A. Place an exhaust-manifold gasket on each exhaust port making sure the metal side of the gasket faces the engine; then place the exhaust manifold into position and secure with four nuts and lock washers. Tighten to 1.8-2.2 kg-m (13-16 ft-lb).

NOTE: The exhaust manifold spring bracket should be located on top.

B. Place an exhaust gasket on each cylinder with its metal side facing toward the cylinder. Install the exhaust flanges and secure with four nuts and lock washers. Torque the four nuts to 1.8-2.2 kg-m (13-16 ft-lb).
Disassembling Axial Fan

1. Remove the fan cover.

2. Using the Arctic Fan Holder (p/n 0144-113), remove the nut, lock washer, and washer securing pulley halves.

 - **CAUTION**

 Care must be taken when using the Arctic Fan Holder to avoid damaging the fan case.

3. Slide the outer pulley half, shim(s), fan belt, and inner pulley half off the shaft and account for the key. Account for the fan belt.

4. Remove the fan w/ shaft.

5. Drive the bearings from the fan case and account for the spacer between the bearings.

 - **NOTE**: A circlip is positioned between the bearings. The bearings must be driven from the center to the outside of the fan case.

6. Remove the circlip from the fan case.

Inspecting Axial Fan

 - **NOTE**: Whenever a part is worn excessively, cracked, defective, or damaged in any way, replacement is necessary.

1. Inspect fan case and shaft threaded areas for damage or stripped threads; then check shaft keyway and key for excessive wear.

2. Inspect the fan for broken, bent, or damaged vanes.

3. Inspect bearings for smooth rotation.
4. Inspect pulley halves for cracks, gouges, or other damage.

5. Inspect the fan belt for cracks, tears, or fraying.

Assembling Axial Fan

1. Install the circlip into the groove of the fan case.
![Fig. 2-128](image)

2. Press a bearing into the fan case until it is "seated" against the circlip.

3. From the opposite side of the fan case, install the spacer and press the remaining bearing into the fan case until it is "seated".

NOTE: The spacer is positioned between the two fan-case bearings.

4. Insert the fan w/ shaft through the fan bearings.

5. Install the key into the shaft.

6. Slide the inner pulley half, required shim(s), fan belt, and outer pulley half onto the shaft.

Checking Axial Fan-Belt Tension

1. Remove the screws, lock washers, and washers securing the fan belt cover.

2. Squeeze the belt at midspan and observe the belt deflection. The maximum belt deflection on either side must not exceed 6 mm (1/4 in.). If the deflection is not within specifications, adjust the belt tension.

3. Install the fan belt cover.

![Fig. 2-130](image)
Adjusting Axial Fan-Belt Tension

1. Remove the fan cover.
2. Using the Arctic Fan Holder (p/n 0144-113), remove the nut, lock washer, and washer securing the pulley halves.
3. Slide the outer pulley half off the shaft and account for any shim(s).
4. Add or remove shim(s) to attain correct belt tension.

NOTE: To increase belt tension, remove shim(s); to decrease belt tension, install shim(s).
5. Install the fan belt and the outer pulley half on the shaft and, using the Arctic Fan Holder, secure pulley with a washer, lock washer, and nut.
6. Affirm fan-belt tension; adjust if necessary.
7. Install fan belt cover.

Pressure Testing Engine

1. Test the engine for air leaks using the following procedure:
 a. Install two intake-manifold port plugs and tighten the flange clamps securely.

 Fig. 2-131

 b. Place a rubber plug and cover on each exhaust port and secure.

 Fig. 2-132

 c. Connect a pressure tester to the impulse fitting on the crankcase; then pressurize the crankcase to 12 psi and close the valve.

 Fig. 2-133

 d. Monitor the pressure gauge. Pressure must not drop at a rate of more than 1 psi per minute.

 CAUTION

 DO NOT exceed 15 psi pressure or damage to the seals will result.

 e. If the pressure drops faster than specified, inspect for an air leak with soapy water or completely submerge the pressurized engine in clean fresh water. Repair as needed.
When submerging the engine to test for air leaks, the CDI unit should be removed to avoid damage.

NOTE: A pressure tester can be made by drilling out an old spark plug and brazing a fitting to it; then install a tee (with a gauge), valve, and a valve stem. When using this type of pressure tester, the impulse fitting must be plugged and the pressure tester must be installed in one of the spark plug holes.

Fig. 2-134

Installing Engine

NOTE: Except for step 14, procedures designated "A" are for the Cougar and Cheetah F/C; procedures designated "B" are for the El Tigre, Pantera, and Cheetah L/C. On step 14, procedure "A" is for the Cougar, Cheetah F/C, and Pantera.

1. Place the plate assembly into position on the engine and secure with four bolts and lock nuts. Tighten to 7.6 kg-m (55 ft-lb).

2. Place the engine w/plate assembly into position in the engine compartment and secure the engine support to the front end with two cap-lock screws making sure the female mounts and cup washers are properly positioned. Tighten to 2.8-3.5 kg-m (20-25 ft-lb).

3. Secure the rear of the engine plate to the front end with two cap-lock screws making sure the female mounts and cup washers are properly positioned. Tighten to 2.8-3.5 kg-m (20-25 ft-lb).

NOTE: Connect the hood cable.

4. B. Place the temperature-gauge sender into position on the thermostat housing, apply a thread sealant to the threads of the sender, and tighten securely.
5. B. Place the supply hose and radiator hose into position and secure with the clamps.

6. B. Place the hose into position on the water-intake manifold and secure with the clamp.

7. Connect the oil-injection cable to the injection pump; then connect the oil-supply hose to the pump.

8. Connect the impulse hose to the crankcase.

9. Place the carburetors into position and secure with the flange clamps.

10. Connect the main wiring harness, ignition coil wiring harness, and the spark-plug caps.

11. Place the recoil into position and secure with four bolts and lock washers. Tighten bolts to 0.7 kg-m (5 ft-lb).

12. A. Place the pulse charger into position and secure with five springs. Seal the ball joint with RTV 732 or equivalent.

 B. On the El Tigre 6000 and Cheetah U/C, place the expansion chambers into position and secure to the exhaust flanges and muffler with ten springs. Secure each expansion chamber to the front end with a spring. Seal the expansion chamber ball joints with RTV 732 or equivalent. On the Pantera and El Tigre 5000, place the pulse charger into position and secure to the exhaust manifold with two springs. Secure the pulse charger to the brackets with the two large springs. Seal the ball joints with RTV 732 or equivalent.
NOTE: Do not overapply the RTV 732.

1. B. On the El Tigre 6000 and Cheetah L/C, place the torque link into position and secure. Adjust the torque link to fit snugly up to the engine using the adjusting stud. Secure the adjustment by tightening the jam nuts.

14. A. On the Cougar, Cheetah F/C and Pantera, place the drive clutch into position on the crankshaft and secure with the bolt and lock washer. Tighten to 7.6-8.3 kg-m (55-60 ft-lb).

B. On the El Tigre and Cheetah L/C, place the clutch into position on the crankshaft and secure with the bolt, pilot washer, and lock washer. Tighten to 7.6-8.3 kg-m (55-60 ft-lb).

15. Install the drive belt and close the clutch shield.

16. Check drive clutch/driven pulley alignment.

17. B. Fill the cooling system to the bottom of the neck with the proper anti-freeze/water solution.

18. Bleed the oil-injection system.

19. Check ignition timing.

20. Test drive the snowmobile.

CAUTION

If the engine had a major overhaul or if any major part was replaced, proper engine break-in procedures must be followed. If proper engine break-in procedures are not followed, severe engine damage may result.

Liquid Cooling System

The liquid cooling system consists of a radiator, water pump, thermostat, thermostat by-pass, and heat exchangers. The system should be inspected for leaks or damage whenever an overheating problem is experienced.

INSPECTING THERMOSTAT

1. Inspect the thermostat for corrosion, wear, or spring damage.

2. Using the following procedure, inspect the thermostat for proper operation.

 a. Suspend the thermostat in a container filled with water.

 b. Heat the water and monitor the temperature with a thermometer.

 c. The thermostat should open at 50°C (122°F).
SECTION 3 — FUEL SYSTEM

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carburetor Specifications</td>
<td>46</td>
</tr>
<tr>
<td>Pre-Maintenance Checks</td>
<td>46</td>
</tr>
<tr>
<td>Removing Carburetor</td>
<td>46-47</td>
</tr>
<tr>
<td>Disassembling Carburetor</td>
<td>47-49</td>
</tr>
<tr>
<td>Cleaning Carburetor</td>
<td>49</td>
</tr>
<tr>
<td>Inspecting Carburetor</td>
<td>49</td>
</tr>
<tr>
<td>Assembling Carburetor</td>
<td>50-53</td>
</tr>
<tr>
<td>Installing Carburetor</td>
<td>53</td>
</tr>
<tr>
<td>Adjusting Carburetors</td>
<td>53-55</td>
</tr>
<tr>
<td>Removing Oil-Injection Pump</td>
<td>55</td>
</tr>
<tr>
<td>Installing Oil-Injection Pump</td>
<td>55-56</td>
</tr>
<tr>
<td>Synchronizing Oil-Injection Pump</td>
<td>56</td>
</tr>
<tr>
<td>Checking</td>
<td>56</td>
</tr>
<tr>
<td>Adjusting</td>
<td>56</td>
</tr>
<tr>
<td>Bleeding Oil-Injection System</td>
<td>56</td>
</tr>
<tr>
<td>Fuel Pump</td>
<td>57</td>
</tr>
<tr>
<td>Air-Intake Silencer</td>
<td>57</td>
</tr>
<tr>
<td>Inspecting and Cleaning</td>
<td>57</td>
</tr>
<tr>
<td>Removing Fuel Tank</td>
<td>57-58</td>
</tr>
<tr>
<td>Installing Fuel Tank</td>
<td>58</td>
</tr>
<tr>
<td>Main Jet Chart</td>
<td>58</td>
</tr>
</tbody>
</table>
Carburetor Specifications

<table>
<thead>
<tr>
<th>Low Altitude</th>
<th>Pantera El Tigre 5000</th>
<th>Cheetah L/C El Tigre 6000</th>
<th>Cougar Cheetah F/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Carburetors</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Type</td>
<td>VM34</td>
<td>VM38</td>
<td>VM34</td>
</tr>
<tr>
<td>Main Jet</td>
<td>280</td>
<td>370</td>
<td>260</td>
</tr>
<tr>
<td>Pilot Jet</td>
<td>27.5</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Pilot Air Screw (Turns Out)</td>
<td>1½</td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>Needle Jet</td>
<td>P-4 (166)</td>
<td>Q-6 (166)</td>
<td>P-4 (166)</td>
</tr>
<tr>
<td>Jet Needle</td>
<td>6DH3-3</td>
<td>6DH8-2</td>
<td>6DH2-3</td>
</tr>
<tr>
<td>Slide Cut-away</td>
<td>2.5</td>
<td>3.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High Altitude</th>
<th>Pantera El Tigre 5000</th>
<th>Cheetah L/C El Tigre 6000</th>
<th>Cougar Cheetah F/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Carburetors</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Type</td>
<td>VM34</td>
<td>VM38</td>
<td>VM34</td>
</tr>
<tr>
<td>Main Jet</td>
<td>See Jet Chart</td>
<td>See Jet Chart</td>
<td>See Jet Chart</td>
</tr>
<tr>
<td>Pilot Jet</td>
<td>27.5</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Pilot Air Screw (Turns Out)</td>
<td>1½</td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>Needle Jet</td>
<td>P-4 (166)</td>
<td>Q-2 (166)**</td>
<td>P-4 (166)</td>
</tr>
<tr>
<td>Jet Needle</td>
<td>6DH3-2</td>
<td>6DH8-2</td>
<td>6DH2-2</td>
</tr>
<tr>
<td>Slide Cut-away</td>
<td>2.5</td>
<td>3.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

*Elevations between 1524 m (5000 ft) and 2440 m (8000 ft).
**Elevations above 2440 m (8000 ft).

Pre-Maintenance Checks

Before troubleshooting the fuel system, several simple checks should be performed. Many times what appears to be a serious problem is only a minor one.

1. Remove the in-line fuel filter; then plug the hose to prevent drainage. If the filter is dirty, either backflush with cleaning solvent or replace the filter.

Removing Carburetor

1. Loosen the screw and lock washer securing the mixing-body-top plate.
2. Remove the mixing body top by rotating it counterclockwise; then remove the top with spring, plate, jet needle w/E-ring, and piston valve from the carburetor.
Disassembling Carburetor

NOTE: Procedures designated “A” are for the Cougar, Cheetah F/C, El Tigre 5000, and Pantera; procedures designated “B” are for the El Tigre 6000 and Cheetah L/C.

1. A. Remove the four screws and lock washers securing the float chamber; then remove the float chamber and gasket.

B. Remove the four screws and lock washers securing the float chamber; then remove the float chamber and gasket. Remove the vent hoses. Account for the hose plates.

2. Remove the caps from the float towers; then remove the floats. Remove the drain plug and washer (O-ring on the Cougar, Cheetah F/C, El Tigre 5000, and Pantera).

NOTE: The floats should be removed only if replacement is necessary.
3. Remove the float-arm pin; then remove the float arm.

Fig. 3-7

4. A. Remove the inlet needle valve; then remove the seat and washer.

B. Remove the inlet needle valve retainer; then remove the inlet needle valve. Remove the seat. Account for two washers and a plate.

Fig. 3-8

5. A. Remove the main jet and washer from the needle jet; then from the top of the carburetor, remove the needle jet.

B. Remove the main jet from the screw guide; then remove the screw guide (from the top of the carburetor) and remove the needle jet.

Fig. 3-9

6. Remove the pilot jet.

Fig. 3-10

7. Remove the pilot air screw and spring.

Fig. 3-11

8. Remove the throttle stop screw and spring.

Fig. 3-12
9. Remove the throttle cable from the piston valve; then remove the piston valve. Account for the jet needle w/E-ring, washer, plate, spring, and top. Remove the E-ring and washer from the jet needle.

10. Separate the choke plunger assembly from the choke cable by compressing the spring and removing the plunger from the cable; then remove the spring, thread the plunger cap off the cable.

Cleaning Carburetor

CAUTION

DO NOT place any non-metallic parts in parts cleaning solvent because damage or deterioration will result.

1. Place all metallic parts in a wire basket and submerge in carburetor cleaner.
2. Soak parts for about 30 minutes; then rinse with fresh parts-cleaning solvent.
3. Wash all non-metallic parts with soap and water. Rinse thoroughly.
4. Dry all components with compressed air only making sure all holes, orifices, and channels are unobstructed.

WARNING

When drying components with compressed air, be sure to protect eyes from the cleaning solvent.

Inspecting Carburetor

NOTE: Whenever a part is worn excessively, cracked, defective, or damaged in any way, replacement is necessary.

1. Inspect the carburetor body for cracks, nicks, stripped threads, and any other imperfections in the casting.
2. Inspect the piston valve for cracks, score marks, or imperfections in the casting.
3. Inspect the condition of the piston-valve spring.
4. Inspect floats for damage.
5. Inspect gaskets and washers for distortion, tears, or noticeable damage.
6. Inspect tips of the throttle stop screw, jet needle, pilot air screw, and the inlet needle valve for wear, damage, or distortion.
7. Inspect the pilot jet and main jet for obstructions or damage.

NOTE: If the pilot jet is obstructed, the mixture will be extremely lean at part-throttle operation.

8. Inspect plunger and seat for wear or damage.
9. Inspect carburetor-mounting flange(s) for damage and tightness.

CAUTION

An air leak between the carburetor and engine will cause severe engine damage.
Assembling Carburetor

NOTE: Procedures designated "A" are for the Cougar, Cheetah F/C, El Tigre 5000, and Pantera; procedures designated "B" are the El Tigre 6000 and Cheetah L/C.

Fig. 3-15

Cougar-Cheetah F/C-Pantera-El Tigre 5000

Fig. 3-16

El Tigre 6000-Cheetah L/C

KEY
1. Mixing Body Assembly
2. Float Chamber
3. Plate
4. Piston Valve
5. Jet Needle
6. Main Jet
7. Washer
8. Needle Jet
9. E-Ring
10. Float
11. Cap
12. Screw
13. Mixing Body Top
14. Pilot Air Screw
15. Spring
16. Spring
17. Throttle Stop Screw
18. Drain Plug
19. Washer
20. Spring
21. Plunger
22. Air Vent Hose
23. Pilot Air Screw
24. Spring
25. Pilot Jet
26. Float Arm Pin
27. Plate
28. Screw Guide
29. Main Jet
30. Cap
31. Float
32. Float Chamber
33. Washer
34. Drain Plug
35. E-Ring
36. E-Ring Washer
1. Install the throttle stop screw and spring.

2. Install the pilot air screw and spring. Turn clockwise until lightly seated; then back out 1 1/2 turns for an initial setting.

3. Install the pilot jet.

4. A. Insert the needle jet into position from the top of the carburetor making sure the groove in the needle jet is aligned with the pin in the mixing body; then place the main jet and washer into position and secure.

 B. Insert the needle jet into position from the top of the carburetor making sure the groove in the needle jet is aligned with the pin in the mixing body; then place the screw guide into position and secure and main jet into position and secure.

5. A. Place the seat and washer into position and secure; then install the inlet needle valve.

 B. In order, place a washer, plate, washer, and seat into position and secure. Install the inlet needle valve and secure with the retainer.
6. Place the float arm into position and secure with the pin.

Fig. 3-23

7. Check the float arm height. Using a caliper, measure the distance from the gasket surface to the top of the float arm (with the carburetor inverted). If measurement is not within specifications, adjust by bending the actuating tab.

Fig. 3-24

<table>
<thead>
<tr>
<th>FLOAT ARM HEIGHT</th>
<th>mm</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cougar</td>
<td>22-24</td>
<td>0.86-0.95</td>
</tr>
<tr>
<td>Cheetah F/C</td>
<td>22-24</td>
<td>0.86-0.95</td>
</tr>
<tr>
<td>Pantera</td>
<td>22-24</td>
<td>0.86-0.95</td>
</tr>
<tr>
<td>El Tigre 5000</td>
<td>17-19</td>
<td>0.66-0.74</td>
</tr>
<tr>
<td>El Tigre 6000</td>
<td>17-19</td>
<td>0.66-0.74</td>
</tr>
<tr>
<td>Cheetah L/C</td>
<td>17-19</td>
<td>0.66-0.74</td>
</tr>
</tbody>
</table>

8. Place the washer (O-ring on the Cougar, Cheetah F/C, El Tigre 5000, and Pantera) and drain plug into position and secure; then place the floats into position making sure UP is properly positioned. Press the caps onto the float towers.

9. A. Place the gasket and float chamber into position and secure with the four screws and lock washers.

B. Place the gasket and float chamber into position and secure with four screws and lock washers making sure the hose plates are properly positioned on the two front screws. Install the vent hoses.

Fig. 3-25

Fig. 3-26

10. Place the E-ring into position in the proper groove (see Fig 3-27) of the jet needle; then from the bottom of the jet needle, slide the E-ring washer up against the E-ring. Place the top into position on the throttle cable. Place the jet needle into the piston valve. Secure assembly by connecting the throttle cable to the piston valve; then place the plate on top of the jet needle and place the spring into position.

- CAUTION -

For high altitude operation, see the Specifications Chart for proper positioning of the E-ring.
11. Thread the plunger cap onto the choke cable. Place the spring over the cable end and compress. Position the cable end into the starter plunger and release the spring.

Installing Carburetort

1. Place the carburetor into position in the flange and air silencer; then tighten the flange clamp making sure the carburetor is level and correctly positioned in the alignment notch of the flange.

2. Connect the fuel hose to the carburetor inlet fitting.

3. Thread the brass choke-cable housing into the carburetor making sure the washer is properly positioned and secure.

4. Place the mixing body top into position making sure the full-length groove in the piston valve is aligned with the pin in the mixing chamber bore; then secure the mixing body top.

5. Secure the mixing body top by tightening the screw and lock washer making sure the mixing-body-top plate is properly positioned.

6. Adjust carburetors.

NOTE: Slide the carburetor into the boot; then slide the carburetor into the flange.

Adjusting Carburetortors

- **CAUTION**

 The air-intake silencer and boots must be in position whenever the engine is run. If the silencer is removed and the engine is run, a lean condition will result. Therefore, DO NOT run the engine when the air-intake silencer is removed.
1. Be sure ignition switch key is in the OFF position and the parking brake is set.

2. Loosen the jam nut securing each choke-cable adjuster. Rotate each choke-cable adjuster to obtain 1.5 mm (1/16 in.) free play between the choke-cable lever and console nut when the lever is in the DOWN position. Lock each adjuster in place bybottoming each jam nut against the brass plunger cap.

3. Loosen jam nut securing each swivel adapter.

4. Rotate each swivel adapter clockwise until free play is felt in the throttle cable.

5. Remove the air-intake silencer boots.

6. Rotate each throttle stop screw counterclockwise until its spring is fully extended. Rotate each screw clockwise until the screw contacts the piston valve; then compress the throttle lever to half throttle and, while holding the throttle lever, rotate the throttle stop screw clockwise an additional 1½ turns.

7. Rotate each swivel adapter until no free play is felt in the throttle cable.

8. Compress the throttle lever and, using the fingers, check the synchronization of the piston valves. Each piston valve must reach the top of the carburetor bore (at backside) at the same time. If one piston valve is lower than the other, rotate its swivel adapter until it is synchronized with the other piston valve. Lock both swivel adapters bybottoming the jam nuts.

9. Carefully rotate each pilot air screw clockwise until lightly seated.
10. Rotate each pilot air screw counterclockwise 1½ turns from the seated position.

NOTE: Synchronize the oil-injection system before starting the snowmobile.

11. Install the air-intake silencer boots.

12. With the snowmobile on a shielded safety stand, start the snowmobile engine and thoroughly warm up. "Fine tune" the throttle stop screws and the pilot air screws until the engine idles smoothly at the desired rpm (2000-2500 rpm is recommended).

NOTE: If the engine does not start after the carburetors have been adjusted, repeat steps 4 and 7 because the throttle/ignition monitor switch may not be correctly tensioned. If all throttle-cable slack is not taken up, the monitor switch will prevent the ignition system from firing the spark plugs.

WARNING

DO NOT operate the snowmobile when any component in the throttle system is damaged, frayed, kinked, worn, or improperly adjusted. If the snowmobile is operated when the throttle system is not functioning properly, personal injury could result.

Removing Oil-Injection Pump

1. Remove both carburetors.

2. Disconnect the oil-supply hose from the pump and plug to prevent oil drainage.

3. Remove the two bolts, lock washers, and washers securing oil-injection pump and retainer to the crankcase.

Installing Oil-Injection Pump

NOTE: When use of a silicone sealer is indicated, use either RTV Silicone Sealant or Three Bond Sealant.

1. Apply silicone sealer to both sides of the retainer gasket; then place gasket and retainer into position on the crankcase.

2. Apply silicone sealer to the oil-injection pump gasket; then place gasket and pump into position making sure the oil-injection pump gear is correctly aligned with the oil-injection pump drive gear.

CAUTION

Be sure the gear is properly aligned with the slot of the oil-injection pump shaft.

3. Secure pump with two bolts, lock washers, and washers. Tighten bolts to 0.7 kg-m (5 ft-lb).
4. Connect the oil-injection cable to the pump.

5. Connect the two hoses to the fittings and check to make sure clamps are in place; then tighten clamps.

6. Connect oil-supply hose to the pump inlet fitting.

7. Bleed oil-injection system.

8. Install both carburetors.

9. Check oil-injection system synchronization.

Synchronizing Oil-Injection Pump

CHECKING

To check the oil-injection system synchronization, use the following procedure:

1. With the ignition switch key in the OFF position, move the throttle lever to the wide-open-throttle position.

2. Check the alignment of the mark on the pump housing and the mark on the control arm. If marks align, the oil-injection system is synchronized with the carburetors and no adjustment is necessary. If the marks do not align, adjust synchronization.

ADJUSTING

To adjust the oil-injection system synchronization, use the following procedure:

1. Loosen the jam nut securing the adjustment cable.

2. Move the throttle lever to the wide-open-throttle position.

Bleeding Oil-Injection System

Whenever bleeding the oil-injection system, use a 50:1 gas/oil mixture in the gas tank to ensure adequate engine lubrication. Failure to use the 50:1 mixture during oil-injection system bleeding will result in severe engine damage.

1. Fill reservoir with either Arctco Injection Oil or Arctic Cat Injection Oil.

2. Place a shop towel below the oil-injection pump bleed screw and remove the bleed screw from the pump. Allow oil to flow through the oil-supply hose until the hose is filled with oil and free of air; then install bleed screw.

NOTE: To aid in bleeding the system, blow into the vent line to force the oil toward the pump. The oil tank cap must be on for this procedure.

3. Using a shielded safety stand, raise the rear of the snowmobile off the floor. Start the engine and allow it to idle.

4. Using a stiff wire with a hooked end, pull the control arm upward to the wide-open position.

WARNING

Keep hands and clothing away from all moving or rotating parts.

5. Idle the engine until oil flows to the top of the oil-delivery hoses free of air bubbles.

6. When oil flows free of any air bubbles, shut the engine off.

7. Release the parking brake and check for leakage.
Fuel Pump

The fuel pump is now a serviceable item. It may be either repaired or replaced as a complete unit. To test fuel pump pressure, use the following procedure:

a. Using a tee, connect a pressure gauge between a fuel pump and one of the carburetors.

b. Using a shielded safety stand, raise the rear of the snowmobile off the floor and check the pressure at various engine rpm.

<table>
<thead>
<tr>
<th>RPM</th>
<th>PSI</th>
<th>g/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000-2000</td>
<td>3.0-3.5</td>
<td>200-240</td>
</tr>
<tr>
<td>3000-4000</td>
<td>4.5-5.5</td>
<td>310-375</td>
</tr>
<tr>
<td>5000-6000</td>
<td>6.0-7.0</td>
<td>420-490</td>
</tr>
</tbody>
</table>

Air-Intake Silencer

The air-intake silencer is a specially designed component used to silence the incoming fresh air and also to catch the fuel that "spits back" out of the carburetors. The carburetors are calibrated with the air-intake silencer in position; therefore, the engine must never be run with the air-intake silencer removed.

INSPECTING AND CLEANING

NOTE: The air-intake silencer cannot be disassembled; it must be replaced as a complete unit.

1. With the silencer removed, check for holes or cracks in the silencer.

2. Periodically clean the silencer by blowing fresh air through it.

Removing Fuel Tank

1. Remove seat cushion from tunnel.

2. Remove the two machine screws securing the sides of the console; then remove the two machine screws and nuts securing the top of the console.

3. Remove the fuel cap and spill seal.

4. Remove the spring securing the fuel tank to the tunnel.
5. Remove the vent hose and fuel hose from the tank and plug the fittings to prevent drainage; then raise the console to allow removal of the tank and remove the tank.

Installing Fuel Tank

1. Raise console to allow installation of the tank and place the fuel tank into position; then install the vent hose and fuel hose.

2. Secure the tank to the tunnel with the spring.

3. Install the spill seal and fuel cap.

4. Secure the upper part of the console with the two machine screws and nuts and the sides of the console with two machine screws.

5. Place the seat cushion into position and secure with the snaps.

MAIN JET CHART

<table>
<thead>
<tr>
<th>ALTITUDE - FEET (METERS)</th>
<th>RICHER</th>
<th>EL TIGRE 6000 - CHEETAH L/C</th>
<th>LEANER</th>
</tr>
</thead>
<tbody>
<tr>
<td>8000 (2440)</td>
<td>280</td>
<td>270</td>
<td>250</td>
</tr>
<tr>
<td>6000 (1830)</td>
<td>300</td>
<td>290</td>
<td>270</td>
</tr>
<tr>
<td>4000 (1220)</td>
<td>330</td>
<td>310</td>
<td>300</td>
</tr>
<tr>
<td>2000 (610)</td>
<td>360</td>
<td>340</td>
<td>330</td>
</tr>
<tr>
<td>0 (0)</td>
<td>370</td>
<td>360</td>
<td>350</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALTITUDE - FEET (METERS)</th>
<th>RICHER</th>
<th>COUGAR - CHEETAH F/C</th>
<th>LEANER</th>
</tr>
</thead>
<tbody>
<tr>
<td>8000 (2440)</td>
<td>190</td>
<td>180</td>
<td>170</td>
</tr>
<tr>
<td>6000 (1830)</td>
<td>210</td>
<td>200</td>
<td>190</td>
</tr>
<tr>
<td>4000 (1220)</td>
<td>230</td>
<td>220</td>
<td>210</td>
</tr>
<tr>
<td>2000 (610)</td>
<td>250</td>
<td>240</td>
<td>230</td>
</tr>
<tr>
<td>0 (0)</td>
<td>270</td>
<td>260</td>
<td>250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALTITUDE - FEET (METERS)</th>
<th>RICHER</th>
<th>PANTERA - EL TIGRE 5000</th>
<th>LEANER</th>
</tr>
</thead>
<tbody>
<tr>
<td>8000 (2440)</td>
<td>220</td>
<td>210</td>
<td>200</td>
</tr>
<tr>
<td>6000 (1830)</td>
<td>240</td>
<td>230</td>
<td>220</td>
</tr>
<tr>
<td>4000 (1220)</td>
<td>260</td>
<td>250</td>
<td>240</td>
</tr>
<tr>
<td>2000 (610)</td>
<td>270</td>
<td>260</td>
<td>250</td>
</tr>
<tr>
<td>0 (0)</td>
<td>290</td>
<td>270</td>
<td>260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEMPERATURE - Fahrenheit (Celsius)</th>
<th>RICHER</th>
<th>PANTERA - EL TIGRE 5000</th>
<th>LEANER</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40 to -20 (-40 to -29)</td>
<td>-20 to 0 (-29 to -18)</td>
<td>0 to +20 (-18 to -7)</td>
<td>+20 to +40 (-7 to +4)</td>
</tr>
</tbody>
</table>

*NOTE: Operating the EL TIGRE 6000 and CHEETAH L/C at high altitude requires the following carburetion changes:
5000-8000 feet, install a Q-2 (166) needle jet; 8000-10,000 feet, install a Q-0 (166) needle jet. Operating the PANTERA and EL TIGRE 5000 at an altitude of 5000 feet or more requires raising each jet needle circlip 1 clip position. Operating the COUGAR and CHEETAH F/C at an altitude of 5000 feet or more requires installing 30 pilot jets and raising each jet needle circlip 1 clip position. Operating the COUGAR and CHEETAH F/C at sea level requires installing 270 main jets.

*After the break-in period the main jets should be changed in accordance to the appropriate Main Jet Chart.
SECTION 4 — DRIVE SYSTEM

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Belt</td>
<td>60</td>
</tr>
<tr>
<td>Drive Clutch Specifications</td>
<td>60</td>
</tr>
<tr>
<td>Drive Clutch (Cougar, Pantera, & Cheetah F/C)</td>
<td>61-73</td>
</tr>
<tr>
<td>Removing</td>
<td>61</td>
</tr>
<tr>
<td>Checking Bearing Wear</td>
<td>61</td>
</tr>
<tr>
<td>Visual Inspection Procedure</td>
<td>61</td>
</tr>
<tr>
<td>Measurement Method Procedure</td>
<td>61-62</td>
</tr>
<tr>
<td>Disassembling</td>
<td>62-65</td>
</tr>
<tr>
<td>Cleaning</td>
<td>65</td>
</tr>
<tr>
<td>Inspecting</td>
<td>65</td>
</tr>
<tr>
<td>Replacing Bushings</td>
<td>65-69</td>
</tr>
<tr>
<td>Removing Outer Cover Bushing</td>
<td>65-66</td>
</tr>
<tr>
<td>Installing Outer Cover Bushing</td>
<td>66-67</td>
</tr>
<tr>
<td>Removing Movable Sheave Bushing</td>
<td>67-68</td>
</tr>
<tr>
<td>Installing Movable Sheave Bushing</td>
<td>68-69</td>
</tr>
<tr>
<td>Assembling</td>
<td>70-72</td>
</tr>
<tr>
<td>Installing</td>
<td>73</td>
</tr>
<tr>
<td>Drive Clutch (El Tigre & Cheetah L/C)</td>
<td>73-78</td>
</tr>
<tr>
<td>Removing</td>
<td>73</td>
</tr>
<tr>
<td>Disassembling</td>
<td>73-74</td>
</tr>
<tr>
<td>Cleaning</td>
<td>75</td>
</tr>
<tr>
<td>Inspecting</td>
<td>75-76</td>
</tr>
<tr>
<td>Assembling</td>
<td>76-77</td>
</tr>
<tr>
<td>Changing Cam Arms</td>
<td>77</td>
</tr>
<tr>
<td>Installing</td>
<td>78</td>
</tr>
<tr>
<td>Driven Pulley</td>
<td>76-84</td>
</tr>
<tr>
<td>Removing</td>
<td>76</td>
</tr>
<tr>
<td>Disassembling</td>
<td>79-80</td>
</tr>
<tr>
<td>Cleaning</td>
<td>80</td>
</tr>
<tr>
<td>Inspecting</td>
<td>80-81</td>
</tr>
<tr>
<td>Bearings</td>
<td>81</td>
</tr>
<tr>
<td>Removing</td>
<td>81</td>
</tr>
<tr>
<td>Installing</td>
<td>81</td>
</tr>
<tr>
<td>Assembling</td>
<td>82-83</td>
</tr>
<tr>
<td>Installing</td>
<td>84</td>
</tr>
<tr>
<td>Drive Clutch/Driven Pulley</td>
<td>84-85</td>
</tr>
<tr>
<td>Checking Parallelism/Offset</td>
<td>84-85</td>
</tr>
<tr>
<td>Correcting Parallelism/Offset</td>
<td>85</td>
</tr>
<tr>
<td>Drive Train</td>
<td>86-91</td>
</tr>
<tr>
<td>Disassembling</td>
<td>86-88</td>
</tr>
<tr>
<td>Cleaning and Inspecting</td>
<td>88</td>
</tr>
<tr>
<td>Assembling</td>
<td>88-91</td>
</tr>
<tr>
<td>Brake System</td>
<td>92-96</td>
</tr>
<tr>
<td>Removing</td>
<td>92</td>
</tr>
<tr>
<td>Disassembling</td>
<td>92-93</td>
</tr>
<tr>
<td>Cleaning and Inspecting</td>
<td>93</td>
</tr>
<tr>
<td>Assembling</td>
<td>94-95</td>
</tr>
<tr>
<td>Installing</td>
<td>95</td>
</tr>
<tr>
<td>Adjusting Brake Lever Travel</td>
<td>96</td>
</tr>
</tbody>
</table>
Drive Belt

The belt dimensions and construction are two factors that influence the performance of the drive system. The two belt dimensions that are important to the performance of the snowmobile are the outside circumference and the width. Both of these dimensions will influence shifting characteristics.

If the drive belt is longer than specified, the drive clutch and driven pulley will not have the full shift ratio. Also, a too-long drive belt will cause poor acceleration and a decrease in top speed. A belt that is shorter than specified will cause a loss in performance and a bog on engagement as the drive clutch and driven pulley will have a different shift pattern because they are in different ratios than conditions for which they were originally matched.

NOTE: A drive belt that is worn thin may produce the same effect as one that is too long.

Drive belt construction has an influence on the way the drive clutch and driven pulley will shift and on the amount of power that will be transmitted through the system. ONLY EITHER ARCTICO OR ARCTIC CAT DRIVE BELTS SHOULD BE USED. Different brands of belts may not have the same construction causing more friction or more slippage when the belt is wedged between the sheaves and, thus, a loss of efficiency.

NOTE: A stiff belt causes HP loss to the track. As a belt warms up, it gets more flexible and transmits power with less HP loss.

Drive Belt Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Cougar</th>
<th>Pantera</th>
<th>Cheetah L/C</th>
<th>El Tigre 6000</th>
<th>El Tigre 5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>p/n</td>
<td>0227-030</td>
<td>0227-032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside Circumference (Range)</td>
<td>110-111 cm</td>
<td>110.5-111.1 cm</td>
<td>43 5/16-43 11/16 in.</td>
<td>43 1/2-43 3/4 in.</td>
<td></td>
</tr>
<tr>
<td>Width (Range)</td>
<td>34.1-35.7 mm</td>
<td>34.1-35.7 mm</td>
<td>1 11/32-1 13/32 in.</td>
<td>1 11/32-1 13/32 in.</td>
<td></td>
</tr>
</tbody>
</table>

Drive Clutch Specifications*

<table>
<thead>
<tr>
<th>Clutch p/n</th>
<th>Cougar</th>
<th>Pantera</th>
<th>El Tigre 5000</th>
<th>El Tigre 6000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cheetah F/C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight p/n</td>
<td>0146-286</td>
<td>0146-105</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Color</td>
<td>Green</td>
<td>Green</td>
<td>Green/Yellow</td>
<td>Green/Yellow</td>
</tr>
<tr>
<td>Spring p/n</td>
<td>0146-068</td>
<td>0146-068</td>
<td>0136-292</td>
<td>0136-292</td>
</tr>
<tr>
<td>Color</td>
<td>Green</td>
<td>Green</td>
<td>Green/Yellow</td>
<td>Green/Yellow</td>
</tr>
<tr>
<td>Ramp p/n</td>
<td>0146-294</td>
<td>0646-024</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Roller p/n</td>
<td>0146-421</td>
<td>0146-421</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Cam Arm p/n</td>
<td>N/A</td>
<td>N/A</td>
<td>0146-530</td>
<td>0646-021</td>
</tr>
<tr>
<td>Engagement RPM</td>
<td>3600-4000</td>
<td>4200-4800</td>
<td>4200-4800</td>
<td>4000-4600</td>
</tr>
<tr>
<td>Peak RPM</td>
<td>6800-7000</td>
<td>8350-8600</td>
<td>8500-8700</td>
<td>8500-8750</td>
</tr>
<tr>
<td>Offset Measurement mm</td>
<td>34.7</td>
<td>34.7</td>
<td>34.7</td>
<td>34.7</td>
</tr>
<tr>
<td>Center-to-Center Distance cm</td>
<td>25.9</td>
<td>25.9</td>
<td>25.9</td>
<td>25.9</td>
</tr>
</tbody>
</table>

*Low Altitude
Drive Clutch
(Cougar-Pantera-Cheetah F/C)

REMOVING

1. Open the clutch shield and remove the drive belt.
2. Remove the plug from the belly pan.
3. Using an impact wrench, remove the bolt and lock washer securing the drive clutch to the crankshaft.

4. Using the Arctic Drive Clutch Puller and an impact wrench (or a breaker bar and a spanner wrench), tighten the puller. If the drive clutch will not release, sharply strike the head of the puller. Repeat complete procedure until clutch releases.

NOTE: If an impact gun is not available, use the Drive Clutch Puller/Spanner Wrench (p/n 0144-007) to secure the drive clutch while loosening the clutch bolt and pulling the clutch.

5. Remove the clutch from the engine compartment.

CHECKING BEARING WEAR

The clearance between the hex shaft and bearing is critical for correct drive clutch operation. The flats on the drive clutch are directly associated with the large bearing area.

The maximum allowable bearing wear is limited by the clearance between the ramp and inside surface of the roller arm.

If the bearing appears worn, roller arm and ramp clearance can be visually inspected by looking into the clutch, or the clutch can be removed from the crankshaft and measured. To check bearing wear, use either of the following procedures:

Visual Inspection Procedure

1. While rotating the drive clutch clockwise and counterclockwise, inspect the inside surfaces of the roller arm; there must not be any contact between the roller arm and ramp.

 ![Fig. 4-2](image)

2. If there is no contact between the roller arm and ramp, the maximum allowable drive-clutch bearing wear is within tolerance. The drive clutch is acceptable.

3. If there is contact between the roller arm and ramp, the drive-clutch bearing wear is not within tolerance and the drive clutch movable sheave and housing bearings must be replaced.

Measurement Method Procedure

1. Remove the drive clutch from the crankshaft.
2. Remove housing (cover) and spring.

![Fig. 4-3](image)
3. Install housing and secure with three socket-head cap screws.

4. Keeping the stationary sheave fixed, rotate the movable sheave counterclockwise until all clearance is taken up. Using a scribe and tri-square, scribe a line on the movable sheave.

5. Keeping the stationary sheave and tri-square fixed, rotate the movable sheave clockwise until all clearance is taken up. Using the scribe and tri-square, scribe another line on the movable sheave.

6. Using a caliper or scale, measure the distance between the two scribed lines.

7. If distance between the two scribed lines is less than 4 mm (0.156 in.), the drive-clutch bearing wear is within tolerance and the drive clutch is acceptable.

8. If distance between the two scribed lines is more than 4 mm (0.156 in.), the maximum allowable drive-clutch bearing wear is not within tolerance. Drive clutch movable sheave and housing bearings must be replaced.

DISASSEMBLING
1. Firmly hold the housing (cover) to the movable sheave; then remove the three socket-head cap screws and washers securing the housing to the movable sheave. Remove housing. Note the balance marks on the movable sheave and housing to aid in assembly.

WARNING
The housing must be held down or personal injury may result.
2. Remove the spring; then remove the cup washer.

3. Scribe a line from the spider assembly to the movable sheave; then loosen the three jam nuts and the three set screws holding spider assembly on the hex shaft.

4. Push spider toward stationary sheave; then remove the split ring halves from the groove in the hex shaft.

5. Slide spider and movable sheave off hex shaft. Note the position of the split ring retainers to aid in assembly.
6. Remove the three lock nuts and bolts securing the weights, the rollers, and the bushings to the spider arms; then slide rollers w/bushings from between swing arms.

NOTE: The spider assembly should only be disassembled if it is found that the arm, pin, or bushings need replacement.

7. Inspect the swing arms for wear in the area of the swing arm pin bushings (located at either end of the pin). Inspect the swing arms for signs of wear or cracking. Check each thrust washer located on either side of the swing arm for wear. If any of these parts need replacement, disassemble the spider.

8. Remove the snap ring from each end of each swing arm pin.

NOTE: A complete roller kit w/bushings must be installed even if only one roller assembly is worn or damaged.

9. Using a hex wrench, remove the set screw from the back side of each swing arm.

10. Slide each pin out of the spider. Support spider pin boss on either side of the pin allowing room for the pin to be slid out.

CAUTION

Do not drive the pin out of the spider or the end of the pin may mushroom causing it to damage the spider as it passes through the aluminum mounting boss.

11. Remove the two bushings from the spider using special tool kit p/n 0644-001.

NOTE: If the swing arm pin is removed out for any reason, we recommend to replace the pin, arm, thrust washers, and bushings with new parts. Never reuse any one of these parts without replacing them all as a set.

12. After removing the bushings, inspect the area from which they were removed closely. If there is any sign of cracking or damage, replace the spider.
13. Using a 9/64-in. hex wrench, remove the socket-head cap screws securing the ramps to the movable sheave.

Fig. 4-18

NOTE: A complete set of ramps must be installed even if only one ramp is worn or damaged.

CLEANING

1. Using parts-cleaning solvent, wash grease, dirt, and foreign matter off all parts. Dry the parts with compressed air.

2. If drive belt dust accumulation is present on the stationary sheave or on the movable sheave Duralon bushing, remove the accumulation using parts-cleaning solvent only.

WARNING

DO NOT use steel wool or a wire brush to clean components having a Duralon bushing; damage will result if bushing is contacted with the steel wool or a wire brush.

INSPECTING

NOTE: Whenever a part is worn excessively, cracked, defective, or damaged in any way, replacement is necessary.

1. Inspect stationary sheave, movable sheave, and housing for cracks and imperfections in the castings.

2. Inspect the spider for cracks and imperfections in the casting. Arms, weights, and rollers must not be damaged or worn.

3. Inspect the ramp settings on the inside of the movable sheave for wear and cracks.

4. Inspect the spring for proper compression qualities. Spring compression must be within the range of 123-137 lb @ 2.187 in.

5. Inspect the ramps for any uneven wear pattern.

6. Inspect all threaded areas for any cracked or stripped threads.

7. Inspect the hex shaft; no burrs or rough edges are to be evident. Use a fine file to remove any burrs or rough edges. Thoroughly clean and dry the hex shaft if any filing was done.

8. Inspect bushing for any cracks or excessive gouging.

REPLACING BUSHINGS

Drive clutch bushings can be replaced using the Bushing Installation Tool (p/n 0644-006) and the following instructions:

Removing Outer Cover Bushing

1. Using a 3/32 in. hex wrench, remove the three set screws that lock the hex bushing to the cover.

Fig. 4-19

2. Turn the clutch cover over and set it into the sleeve support.

3. Using the hex shaft driver, drive or press the hex bushing down and out.
4. Inspect the cover bushing area for any signs of cracks or fatigue. If any sign of cracks or fatigue is present, replace the cover.

Installing Outer Cover Bushing

1. Set the cover upside down on a solid, flat surface.
2. Set the cover hex bushing into position in the cover.
3. Slide the hex shaft driver into the triangular-shaped bushing locator (with the machined ring located nearest the triangular plate).
4. Position the hex shaft driver into the bushing and slide the triangular-shaped bushing locator plate down into position. Place the single, locating pin of the bushing locator into one of the three cover pin holes.

NOTE: If you are using a hammer to install the bushing, use a heavy brass or plastic hammer to prevent damage to the hex shaft driver.

5. Check to be sure the hex bushing is located squarely in the cover; then drive or press the bushing into position until it is flush with the outer cover surface.
6. With the bushing in place, position the pilot drilling tool down into the bushing on the outside of cover. Using a No. 25 drill bit, drill three new holes (3/4 in. in depth) into the cover and bushing.
CAUTION

The pilot tool must be used to properly locate the holes.

7. Using a 10-24 tap, tap the three new holes.

8. Apply LOCTITE (red) to the threads of the three set screws and install them into the three newly threaded holes.

9. Using a small punch, stake the top of the three holes to prevent the set screws from backing out.

Removing Movable Sheave Bushing

1. Using a 3/32 in. hex wrench, remove the three set screws from the movable sheave.

2. Set the movable sheave upside down on top of the sleeve support. The sleeve support must be used to support the area around the bushing as the bushing is being either driven or pressed out of the sheave.

3. Using the hex shaft driver, drive or press the hex bushing down and out.
4. Inspect the movable sheave bushing area for any signs of cracks or fatigue. If any sign of cracks or fatigue is present, replace the movable sheave.

Installing Movable Sheave Bushing

1. Set the movable sheave into position on the sleeve support.

 NOTE: One end of the sleeve support has been machined to match the angle of the movable sheave. This end of the tool must support the face of the sheave.

2. Set the movable sheave bushing into position; then position the hex shaft driver and triangular-shaped bushing locator over the bushing.

3. Locate the single, locking pin of the bushing locator in one of the three holes of the movable sheave and slide the hex shaft driver into the new bushing.

4. Check to be sure the bushing is positioned squarely in the sheave; then drive or press the bushing into the movable sheave.

 NOTE: The movable sheave bushing area has a step machined into it. Drive or press the bushing into sheave until you feel the bushing seat against the step.

5. With the bushing in place, position the pilot drilling tool into the bushing from the outside of the sheave. Using a No. 25 drill bit, drill three new set screw holes through sheave and bushing.
6. Using a 10-24 tap, tap the three new holes. Apply LOCTITE (red) to the threads of the set screws and install.

7. Using a small punch, stake the top and bottom of the holes to prevent the set screws from backing out.

8. Check the face of the sheave in the area of the three newly drilled holes. If any sharp edges are found, smooth area using fine emery paper.
1. Install the ramps in the movable sheave and secure.

Fig. 4-37

2. Slide the movable sheave onto the stationary sheave making sure balance marks on both sheaves are aligned.

3. Assemble the spider using the following procedure:

 A. Press the new bushings into the spider pin bosses. Use care to start the bushing straight and press slowly to prevent damage to the bushings. If the inner surface of a bushing is damaged, it must be replaced.
B. Position the swing arm between the spider bosses with a thrust washer on either side of the arm. Press the pin into position leaving enough room at either end of the pin to install the new snap rings.

NOTE: The thrust washers must be installed with the metal side of the washer next to the swing arm.

C. Apply LOCTITE 609 (or Perma-Lok HL 138) to the threads of the set screw; then install the set screw making sure the groove in the pin is aligned with the set screw.

CAUTION

The groove in the pin must align with the set screw.

D. Using a good snap-ring pliers, install the new snap rings. Be sure the snap rings are seated in the pin groove.

E. Slide a metal bushing into each roller and position a thrust washer on either side with the bearing surface of the washer facing the roller. Insert the roller assembly between the arm.

F. Slide a weight onto the bolt; then push the bolt w/weight through the roller arm and roller assembly. Install the remaining weight and self locking nut.

NOTE: The heads of the 3 bolts must all be positioned from the right side of the roller arm. If this isn’t done, the clutch will be out of balance.

G. Tighten the lock nut to 0.4-0.5 kg-m (35-45 in.-lb). Apply LOCTITE LOCK N’ SEAL to the threads of the bolt before installing nut. Perform steps B-G to the remaining two roller assemblies.

4. Slide the spider assembly onto the hex shaft with the split ring retainers directed up. Make sure lines made during disassembly are aligned.
5. Install the split ring halves in the groove of the hex shaft.

6. Pull the spider up against the split ring halves; then tighten the set screws. Lock the set screws by bottoming the jam nuts.

7. Slide the cup washer and spring onto the hex shaft.

8. Place the housing on the spring and align the balance marks with those on the stationary and movable sheaves.

9. Push down the housing and lift up the movable sheave until contact is made; then install the three socket-head cap screws. Be sure to use care when installing housing so the Duralon bushing is not damaged. Tighten and then torque the screws to 2.1-2.4 kg-m (15-17 ft-lb).

NOTE: To ensure that the set screws seat properly, tighten, then back out ¼ turn, and tighten again.
INSTALLING

1. Place the drive clutch into position on the crankshaft.

2. Install the bolt and lock washer. Tighten the bolt to 7.6-8.3 kg-m (55-60 ft-lb).

3. Check alignment between the drive clutch and driven pulley.

4. Install the drive belt and secure the clutch shield.

5. Install plug in the belly pan.

Drive Clutch
(El Tigre-Cheetah L/C)

REMOVING

1. Open the clutch shield and remove the drive belt.

2. Remove the plug from the belly pan.

3. Remove the bolt and lock washer securing the drive clutch to the crankshaft; then remove the pilot washer.

4. Using the Comet Drive Clutch Puller and an impact wrench (or a breaker bar and chain wrench), tighten the puller. If the drive clutch will not release, sharply strike the head of the puller. Repeat step until clutch releases.

NOTE: Before installing the clutch puller, apply oil to the threads of the puller and a small amount of grease to the tip of the puller.

5. Remove the clutch from the engine compartment.

DISASSEMBLING

1. Scribe a line across all components.

2. Using an impact wrench, loosen the six bolts securing the cover plate. Remove every other bolt and lock washer from the cover plate; then while firmly holding the cover plate, remove the three remaining bolts and lock washers equally.
3. Remove the cover plate and spring.

4. Using a spider removal tool, turn the spider counterclockwise; then remove spider, spacer rings, and movable sheave.

5. Using a pliers, remove the six guide buttons.

6. Using a vise, deep socket, and a smaller diameter press tool, press the pin and roller out of the spider. Position a deep socket on one side of the spider and the press pin on the opposite side between the opened vise jaws. Slowly close the vise and check to make sure the deep socket and press pin are aligned.

7. Remove the three arm pins and nuts securing the cam arms to the movable sheave; then remove the cam arms with washers.

NOTE: Applying heat to the clutch threaded area will aid in clutch disassembly. The heat will loosen the LOCTITE used during assembly.
CLEANING

1. Using parts-cleaning solvent, wash grease, dirt, and foreign matter off all parts; dry with compressed air.

2. Remove any drive belt dust accumulation from the stationary sheave, movable sheave, and bushing using parts-cleaning solvent only.

 CAUTION

 Do not use steel wool or a wire brush to clean components having a bushing; damage will result.

INSPECTING

NOTE: Whenever a part is worn excessively, cracked, defective, or damaged in any way, replacement is necessary.

1. Inspect stationary sheave, movable sheave, spider, and cover plate for cracks or imperfections in the casting.

2. Inspect the arm pins for wear or bends.

3. Inspect the bushing in the cover plate for wear, damage, or cracks. Measure the inside diameter of the bushing and the outside diameter of the stationary sheave hub. The difference (clearance) must be less than 0.76 mm (0.030 in.).

4. Inspect the bushing in the movable sheave for wear, damage, or cracks. Measure the inside diameter of the bushing and the outside diameter of the stationary sheave hub. The difference (clearance) must be less than 0.76 mm (0.030 in.).

5. Inspect the spring for proper compression qualities. Spring compression must be 53.4 kg (118 lb) when compressed 25.4 mm (1 in.) from normal length.
6. Inspect the cam arms for any uneven wear pattern or damage to the bushings.

7. Inspect all threaded areas for any cracked or stripped threads.

8. Inspect rollers for damage or wear.

9. Inspect the bushings for damage or fraying.

10. Inspect the stationary sheave hub for damage or wear.

ASSEMBLING

1. Place a cam arm and washers (one on either side of the cam arm) into position on the movable sheave; then secure with the arm pin and nut coated with LOCTITE LOCK N' SEAL. Carefully tighten lock nut to a point just ensuring free cam arm movement. Repeat procedure on the other two cam arms making sure the head of each arm pin is positioned to the right side of each cam arm.

2. Place a roller and fiber/steel washers (one on either side of the roller with the fiber side of the washer positioned toward the roller) into position on the spider; then install the pin. Repeat procedure on the other two rollers.

3. Place the guide buttons into position making sure the two dots are positioned vertical; then tap into position until seated.

NOTE: If a guide button does not fit tightly, it must be replaced.
4. Place the movable sheave, spacer rings, and spider into position on the stationary sheave hub. Make sure all threads are clean and free of oily residue. Apply LOCTITE STUD N' BEARING MOUNT to the entire threaded area of the hub and thread the spider onto the hub. Tighten the spider using the Spider Removal Tool to 17.25 kg-m (125 ft-lb). ALLOW THE LOCTITE TO CURE AT ROOM TEMPERATURE FOR 24 HOURS.

5. Place the spring and cover plate into position making sure the line on the cover plate is properly aligned; then compress the spring and install the six bolts coated with LOCTITE LOCK N' SEAL and lock washers. Tighten the six bolts evenly to 1.0 kg-m (7.0 ft-lb).

CHANGING CAM ARMS

The cam arms on the Comet clutch can be changed without disassembling the clutch. To change the cam arms, use the following procedure:

1. Using a large slip-joint pliers, compress the clutch and place a bolt into the cross hole in the hub.

2. Remove the arm pin and nut securing each cam arm; then remove cam arms and washers.

3. Place the new cam arm and washers (one on either side of the cam arm) into position and secure with arm pin and nut coated with LOCTITE LOCK N' SEAL making sure the head of each arm pin is positioned to the right side of each cam arm. Carefully tighten lock nut to a point ensuring free cam arm movement. Repeat procedure on the other two cam arms.

4. Compress the clutch and remove the bolt from the cross hole.
INSTALLING
1. Place the clutch into position on the crankshaft.
2. Install the pilot washer, lock washer, and bolt. Tighten the bolt to 6.9 kg-m (50 ft-lb) maximum.

3. Check alignment between the drive clutch and driven pulley.
4. Install plug in the belly pan.
5. Install the drive belt and secure the clutch shield.

Fig. 4-70

REMOVING
1. Open the clutch shield.
2. Remove the drive belt.
3. Remove the cap-lock screw and washer; then account for and note the position of any alignment washers.

4. Slide the driven pulley off the driven shaft; then remove pulley from the engine compartment. Remove the stub shaft from the driven pulley.

5. Remove the key and alignment washers from the driven shaft.

Fig. 4-71

Driven Pulley

Fig. 4-72
DISASSEMBLING

1. Scribe a line across all driven pulley components to ensure correct assembly and pulley balance.

Fig. 4-73

2. Place the driven pulley on a work fixture so the retainer bracket is directed upward.

Fig. 4-74

■ NOTE: To aid in driven pulley servicing, use a roll of duct tape as a work fixture. The work fixture will increase stability of the pulley and decrease the spring tension during the repair procedure.

3. Remove the three lock nuts securing the retainer bracket; then carefully slide the retainer bracket off the stationary shaft allowing the spring to release tension.

Fig. 4-75

4. Remove the spring.

Fig. 4-76

5. Slide the movable sheave off the stationary shaft; then remove the washer(s) located between the sheaves.

Fig. 4-77
6. Remove the six screws securing each of the sheave covers and remove covers.

NOTE: Each cover needs to be removed only if sheave or sheave cover inspection or replacement is required.

7. Remove the three cap-socket screws and lock washers securing the torque bracket to the stationary sheave; then remove torque bracket.

8. Using a pliers, remove the buttons from the retainer bracket.

CLEANING

1. Using parts-cleaning solvent, wash grease, drive belt dust, and foreign matter off all parts.

CAUTION

Do not use steel or a wire brush to clean driven pulley components. A wire brush or steel wool will cause the sheaves to be gouged (thus, the drive belt may not slide properly between sheaves) and decreased performance and possible accelerated drive belt wear will result.

INSPECTING

NOTE: Whenever a part is worn excessively, cracked, defective, or damaged in any way, replacement is necessary.

1. Inspect the buttons for damage, cracks or wear.

2. Inspect the sheaves and sheave covers for any gouges, cracks, or other damage. Also inspect threaded areas of sheaves for damaged or stripped threads.

3. Inspect the torque bracket for cracks or damage. The ramp portions of the bracket must be free of gouges and damage. Minor scratches may be repaired using #320 grit wet-or-dry sandpaper.
4. Inspect spring for distortion, crystallization, or breaks.

5. Inspect the retainer bracket and spring mounting holes for cracks, damage, or wear.

6. Inspect the retainer bracket and movable sheave bearings for wear. For each respective bearing, measure the outside diameter of the sheave shaft and the inside diameter of the sheave bearings. Compare the readings. Clearance between the shaft and the respective bearing must not exceed 0.5 mm (0.020 in.). If the clearance exceeds the specification, the bearing must be replaced.

BEARINGS

Removing

To remove driven pulley bearings, use the following procedure:

- **NOTE:** To remove the movable sheave bearing, heat must be applied around the bearing.

1. Place the movable sheave or retainer bracket flat on a press.

2. Using an appropriately sized bearing driver, press the bearing out.

Installing

- **NOTE:** Before installing the bearing, apply LOCTITE STUD N BEARING MOUNT to the outside face of the bearing.

1. Place the movable sheave or retainer bracket flat on a press.

2. Using an appropriately sized bearing driver, press the bearing into position. The bearing must be flush with both sides of the bearing boss.

3. Wipe off excess LOCTITE.
1. Place the sheave covers into position on the sheaves; then apply LOCTITE LOCK N' SEAL to the threads of the mounting screws and secure. Tighten the screws to 0.6-0.7 kg-m (50-60 in.-lb).

2. Install the buttons in retainer bracket.

3. Place the torque bracket into position on the stationary sheave making sure the degree number on the torque bracket aligns with the part number on the stationary sheave. Install the three cap-socket screws and lock washers. DO NOT tighten at this time.
4. Place the washer(s) on the stationary sheave shaft.

Fig. 4-89

5. Align the scribed line made during disassembly; then slide movable sheave onto the stationary sheave shaft.

Fig. 4-90

6. Place the sheaves on a work fixture (roll of duct tape, etc.).

7. Place the spring over the stationary sheave hub and hook the turned down end of the spring into the hole in the casting of the stationary sheave.

Fig. 4-91

8. Place the retainer bracket over the spring and hook the turned up end of the spring in the 3rd hole (standard spring tension) of the bracket.

9. While holding the sheaves from rotating, grasp the retainer bracket and rotate it approximately 120° clockwise until the mounting holes align; then push retainer bracket into position and install the three lock nuts. Tighten the lock nuts to 1.5-1.8 kg-m (11-13 ft-lb).

NOTE: The line made during disassembly should be aligned.

Fig. 4-92

10. Rotate the movable sheave to ensure movement without binding.

11. Rotate the torque bracket until it is tight against the 3 buttons; then using a long hex wrench, tighten the three cap-socket screws securing the torque bracket.

Fig. 4-93
INSTALLING

1. Slide the alignment washers onto the end of the driven shaft.

2. Install the key in the driven shaft keyway; then install the driven pulley on the shaft. Align its keyway with the driven shaft keyway.

NOTE: A small amount of LOCTITE ANTI-SEIZE COMPOUND applied to the driven shaft will aid in future driven pulley removal.

3. Secure the driven pulley by installing the stub shaft and bolt. Tighten the bolt to 2.6-3.3 kg-m (19-24 ft-lb).

Fig. 4-94

4. Check drive clutch/driven pulley alignment, adjust as necessary.

5. Install the drive belt and secure clutch shield.

Drive Clutch/Driven Pulley

CHECKING PARALLELISM/OFFSET

If premature drive belt failure is experienced or if the drive belt turns over, parallelism/offset must be checked. Also, parallelism/offset must be checked whenever either the drive clutch or driven pulley is serviced. To check the parallelism/offset, use the following procedure:

1. Open the clutch shield and remove the drive belt.

2. Install the Clutch Alignment Bar between the drive clutch sheaves and against the outside edge of the driven pulley stationary sheave.

3. Allow the alignment bar to rest on the drive clutch shaft.

NOTE: The alignment bar must extend beyond the front edge of the drive clutch.

4. With the bar against the outside edge of the driven pulley stationary sheave at points A and B, the bar should just clear the inside edge of the stationary sheave of the drive clutch and rest on the stationary shaft. If the bar will not either clear the inside edge or is more than 1.5 mm (0.060 in.) from the inside edge, the offset needs to be adjusted.

Fig. 4-95

5. Check parallelism of the drive clutch/driven pulley using the alignment bar and reference points X and Y with the alignment bar against the driven pulley at points A and B. Using a calipers or a machinist's scale, measure X and Y from the back side of the alignment bar. Measurements X and Y must be equal or measurement Y must be more than measurement X but must not exceed measurement X by more than 1.6 mm (0.062 in.).
6. If either the offset or parallelism is other than specified, proceed to Correcting Parallelism/Offset.

CORRECTING PARALLELISM/OFFSET

1. To correct offset, the driven pulley must be moved laterally on the driven shaft. Remove the cap-lock screw and washers securing the driven pulley; then remove the driven pulley.

2. To move the driven pulley inward on the shaft, remove washer(s) as required.

3. To move the driven pulley outward on the shaft, add additional alignment washer(s) behind the driven pulley.

NOTE: When the correct offset is attained, use the large and small alignment washers to correctly position the driven pulley on the driven shaft. Arrange washers to allow the least amount of “float” on the driven shaft. A maximum of one washer thickness “float” is allowable.

4. Install driven pulley and secure with a cap-lock screw and washers. Tighten screw to 2.6-3.3 kg·m (19-24 ft-lb).

5. To correct parallelism, minor adjustments can be made by shimming the rear motor mounts or by moving the engine on the engine plate.

6. Loosen the two front cap-lock screws securing the angle support to the front motor mounts.

7. Loosen the two rear cap-lock screws securing the engine plate to the motor mounts.

8. If measurement \(Y \) is less than or equal to measurement \(X \), insert a shim between the left rear motor mount and the front end.

NOTE: Shims can be made by slotting an appropriately sized flat washer.

9. If measurement \(Y \) exceeds measurement \(X \) by more than 1.6 mm (0.062 in.), insert a shim between the right rear motor mount and the front end.

10. In order, tighten the rear motor mount cap-lock screws and the front motor mount cap-lock screws to 3.2 kg·m (23 ft-lb).

11. Check both offset and parallelism to ensure accuracy and make further adjustments as necessary.

12. Install the drive belt and secure the clutch shield.
Drive Train

DISASSEMBLING
1. Remove either the expansion chambers and muffler or the pulse charger from the engine compartment. Account for two pads.

2. Open the clutch shield and remove the drive belt.

3. Remove the cap-lock screw and washer securing driven pulley; then account for and note the position of any alignment washers.

4. Slide the driven pulley off the driven shaft; then remove driven pulley from the engine compartment. Remove the key and alignment washers from the driven shaft. Account for the stub shaft.

5. Remove the four bolts and lock washers securing chain-case cover, remove the cover and seal, and allow the lubricant to flow onto rags placed in the belly pan.

6. Remove cotter pins and washers securing tensioner spring to the link pins; then remove spring and pads.

7. Remove the cap-lock screws and washers securing both top and bottom sprockets.

8. Slide both sprockets w/chain off the shafts.

- **NOTE:** If a sprocket will not slide off shaft, thread cap-lock screw back into the shaft; then use a puller to loosen the sprocket. The cap-lock screw is used for bottoming the puller bolt.

9. Remove the six lock nuts securing the upper and lower MAG-side flange plates. Remove flange plates, seals, and upper bearing.

- **NOTE:** It may be necessary to use heat to loosen the LOCTITE securing the bearing to the driven shaft. If heat is used, examine the bearing seal for any damage before installation.
10. Loosen the set screw on the PTO-side driven-shaft collar. Drive the collar clockwise (opposite shaft rotation) until it is free.

NOTE: A fine file should be used to remove any burrs left by the collar set screw.

11. Remove the three lock nuts and bolts securing the PTO-side driven shaft flange plates. Account for the torque link on the El Tigre 6000 and Cheetah U/C.

NOTE: It may be necessary to remove the PTO-side carburetor for this procedure. Also, it is necessary to use an extension and universal joint to remove the rear lock nut from upper flange plate.

12. Force the driven shaft toward the PTO side (rotating the shaft to prevent the brake disc from binding on the shaft) until brake disc is free. Account for the key. Remove the lock collar positioned next to the brake disc from the shaft.

NOTE: A fine file should be used to remove any burrs left by the collar set screw.

13. Continue to slide the driven shaft until it is out of the PTO side. Account for a bearing, two flange plates, and the PTO-side driven-shaft collar.

14. Remove the skid frame from the tunnel (see Track/Suspension—Removing Skid Frame section).

15. Remove the three PTO-side lock nuts and bolts securing the driveshaft-bearing flange plates and drive adaptor. Remove drive adaptor and cable.

16. Tap the driveshaft toward the chain case to unseat MAG-side bearing. Remove bearing.

17. Slide the driveshaft toward the MAG side until the PTO end of the driveshaft is out of its mounting hole. Tilt the end of the driveshaft away from the tunnel and slide the driveshaft free of the tunnel. Remove track.

18. Scribe a line on the driveshaft along the edge of each sprocket to aid in assembly. Loosen the set screw on the collar, drive the collar clockwise until free, and remove the bearing and flange plates from the driveshaft.
19. Press the three sprockets off the driveshaft.

20. Remove the six socket-head cap screws and lock nuts securing the brake disc to the hub; then separate disc and hub.

Fig. 4-105

CLEANING AND INSPECTING

- NOTE: Whenever a part is worn excessively, cracked, defective, or damaged in any way, replacement is necessary.

ASSEMBLING

Fig. 4-106

KEY
1. Driveshaft Assembly
2. Drive Sprocket
3. Drive Sprocket
4. Driveshaft
5. Return Spring
6. Carriage Bolt
7. Flange Plate
8. Lock Nut
9. Bearing
10. Cap-Lock Screw
11. Stud O-Ring
12. Stub Shaft
13. Cap-Lock Screw
14. Driven Clutch
15. Washer
16. Carriage Bolt
17. Key
18. Driven Shaft
19. Cap-Socket Screw
20. Lock Nut
21. Key
22. Disc Hub
23. Brake Disc
24. Carriage Bolt
25. Drapcase
26. Washer
27. Lock Nut
28. Ribbed Bolt
29. Cap Screw
30. Cap Screw
31. Bracket
32. Caliper Assy.
33. Brake Puck
34. Crown Nut
35. Seal
36. Bearing
37. Lock Nut
38. Sprocket
39. Pyramid-Tooth Washer
40. Bushing
41. Link Pin
42. Washer
43. Pad
44. Cap Screw
45. Spring Ass'y.
46. Washer
47. Cotter Pin
48. Dropcase Seal
49. Dropcase Cover
50. Dropcase Plug
51. Fiber Washer
52. Clevis
53. Cap Screw
54. Lock Washer
55. Drive Bushing
56. Chain
57. Sprocket
58. Bearing
59. Stud
60. Bearing
61. Spacer
62. Spacer
63. Clevis Pin
64. Bracket
65. Caliper
66. Spacer
67. Backing Plate
68. Washer
69. Adapter Cable
70. Drive Adapter
71. Washer
72. Washer
73. Washer
74. Cotter Pin
75. Cap Screw
76. Lock Nut
77. Lock Collar
78. Reflector Tape
79. Cap Screw
80. Washer

1. Thoroughly wash all metallic components in parts-cleaning solvent. Dry using compressed air.
2. Wash all non-metallic components with soap and water.
3. Inspect driveshaft and driven shaft for damaged splines or stripped threads.
4. Inspect bearings for any roughness or damage.
5. Inspect seals for any breaks or damage.
6. Inspect the track for cuts, gouges, or wear.
7. Inspect the keyways in the driven shaft and the brake hub for wear or damage.
8. Inspect the brake disc for wear or cracks.
9. Inspect chain, sprockets, and chain tensioner components for wear or damage.
10. Inspect the track drive sprockets for wear or damage.
17. Apply a light coat of grease or LOCTITE ANTI-SEIZE COMPOUND to the driven shaft; then install the driven shaft alignment washers (as required) and key. Install the driven pulley with stub shaft, alignment washers (as required), washer, and cap-lock screw. Tighten cap-lock screw to 2.6-3.3 kg-m (19-24 ft-lb).

NOTE: Make sure keyways match when installing driven pulley. Arrange washers to allow the least amount of "float" on the driven shaft. A maximum of 1.5 mm (0.060 in.) "float" is allowable.

18. Check alignment of the drive clutch/driven pulley.

19. Tip the snowmobile onto the PTO side using cardboard to prevent scratching the belly pan; then install the pads and spring and secure with two washers and cotter pins.

20. Pour 236 ml (8 fl oz) of Chainlube into the chaincase.

21. Place chain-case cover seal and chain-case cover into position and secure with four bolts and lock washers.

Fig. 4-117

22. Install drive belt and secure the clutch shield.

23. Install either the expansion chambers and muffler or the pulse charger. Make sure the muffler pads are properly positioned.

Fig. 4-118

NOTE: Apply RTV 732 to the ball joints of the exhaust system.
Brake System

REMOVING
1. Remove the two cap screws and lock nuts securing brake bracket to the chain case. Move bracket clear of chain case accounting for the two bracket spacers and a washer.

Fig. 4-119

2. Loosen the brake cable flange nuts; then slide cable free of bracket.

Fig. 4-120

4. Remove the cotter key securing brake cable clevis; then remove clevis pin accounting for clevis. Disconnect cable from clevis.

Fig. 4-122

DISASSEMBLING
1. Remove the two crown nuts from the cap screws securing caliper assembly. Remove the cap screws accounting for four spacers.

Fig. 4-123

3. Remove the return spring.
1. Secure the hub to the brake disc with the six socket-head cap screws and lock nuts. Tighten lock nuts to 0.4 kg-m (36 in.-lb).

2. Press the sprockets on the driveshaft noting the scribed marks on the shaft and the timing mark found on one tooth of each sprocket. The timing mark is the letter “T” molded into the outer surface of one drive tooth. All the “T” markings must be in alignment.

NOTE: Make sure all sprockets are installed correctly ensuring correct timing of both the center and outer sprockets. The bearing is positioned between the flange plates.

3. Assemble driveshaft components on the PTO-end of the driveshaft. Install bearing lock collar, flange plate, bearing (with flange towards sprocket), and the remaining flange plate.

4. Position front of track up into the tunnel. Install the driveshaft with the splined end through its mounting hole in the chain case.

5. Swing PTO end of driveshaft up; then align holes in the flange plates with holes in tunnel. Place the cable and drive adaptor into position.

6. Insert three bolts from the inside of the tunnel through flange plates, tunnel, and drive adaptor. Secure with three lock nuts. Tighten to 2.2-2.5 kg-m (16-18 ft-lb).

7. Slide MAG-side bearing onto driveshaft (inner race flange must be positioned toward drive chain); then install seal and flange plate. Secure with three lock nuts. Tighten to 2.2-2.5 kg-m (16-18 ft-lb).

8. Place the lower sprocket onto splines. Secure with a cap-lock screw (coated with LOCTITE LOCK N' SEAL) and pyramidal-tooth washer. DO NOT TIGHTEN AT THIS TIME.

9. Install the brake disc lock collar on the splined end of the driven shaft; then install brake hub key into driven shaft keyway.
10. Install the PTO-side bearing w/collar and flange plates on the driven shaft; do not tighten collar at this time. Place the driven shaft into position making sure the brake disc and flange plates are properly positioned. Secure with PTO-side bearing and flange plates with three bolts and lock nuts. Tighten and then torque to 2.2-2.5 kg-m (16-18 ft-lb).

NOTE: On the El Tigre 6000 and Cheetah LC, be sure to place the torque link into position before installing the lock nuts.

11. On the MAG-side driven shaft, apply Scotch-Bond Adhesive 4174 to the bearing seating area adjacent to the shaft splines. Install the bearing, seal, and flange plate and secure with three lock nuts. Tighten to 2.2-2.5 kg-m (16-18 ft-lb).

12. Loop the chain around the lower sprocket and slide the upper sprocket w/chain onto the driven shaft. Secure upper sprocket with a cap-lock screw (coated with LOCTITE LOCK N' SEAL) and pyramidal-tooth washer. Tighten both sprockets to 2.6-3.3 kg-m (19-24 ft-lb). Drive the driven shaft bearing collar in the direction of rotation to lock bearing; then tighten set screw.

13. Slide the brake disc against the upper bearing of the chain case; then slide lock collar against brake hub and tighten the set screw securely.

14. On the PTO side of the track driveshaft, slide the lock collar against the bearing, drive the collar in the direction of rotation until tight, and tighten the collar set screw.

15. Install the skid frame (see Track/Suspension—Installing Skid Frame section).

16. Check alignment of the sprockets using the following procedure:
 a. Place a straightedge against the faces of the sprockets.
 b. Using a feeler gauge, check for clearance along the faces of both sprockets. If clearance exceeds 0.8 mm (0.030 in.), shimming is necessary.

NOTE: Sprockets can only be shimmed out.
2. Remove the cable bracket, caliper assembly, and carrier caliper w/stationary brake puck.

3. Remove the movable puck and plate from the caliper assembly.

Fig. 4-124

4. Remove the spiral w/actuator lever from the caliper assembly.

Fig. 4-125

5. Bend the locking tab away from the adjusting bolt jam nut.

6. Remove the adjusting bolt w/jam nut from the spiral. Remove the jam nut and locking tab.

Fig. 4-126

7. Using a punch, remove the stationary brake puck from the carrier caliper. The carrier caliper has an access hole to aid in puck removal.

NOTE: Do not remove the stationary brake puck unless replacement is necessary.

Fig. 4-127

CLEANING AND INSPECTING

NOTE: Whenever a part is worn excessively, cracked, defective, or damaged in any way, replacement is necessary.

1. Wash all brake components with parts-cleaning solvent and dry thoroughly.

2. Inspect all brake components for signs of wear, fatigue, cracks, or stripped threads.

3. Inspect the spring for cracks, stretching, or unusual bends.

4. Inspect the brake pucks for wear. Pucks must be at least 6.2 mm (0.245 in.) in width.

NOTE: When replacing brake pucks, replace both pucks as a set.
1. Install the stationary brake puck in the carrier caliper using LOCTITE SUPERBONDER ADHESIVE or equivalent.

2. On the adjusting bolt, install the jam nut and locking tab.

3. Thread the spiral into the caliper assembly until it bottoms out; then place the actuator lever onto the spiral making sure the lever is vertical.

4. Thread the adjusting bolt assembly into the spiral until the end of the bolt is flush with the end of the spiral.

5. Place the tab of the locking tab into position on the actuator lever; then finger-tighten jam nut against locking tab.

6. In the caliper assembly, install the plate and movable brake puck.

7. Place the caliper mounting cap screws into position in the cable bracket; then slide a spacer onto each of the cap screws. Install the cap screws through the bracket, caliper assembly, and carrier caliper.

8. Install a spacer and lock nut onto each cap screw. Tighten the cap screws to 3.5 kg-m (25 ft-lb).

NOTE: The forward cap screw has the head machined for additional actuator lever clearance. Also, the heads of the cap screws must face the engine.
INSTALLING

1. Place the clevis onto the end of the brake cable. Then place the clevis into position on the actuator lever and secure with a clevis pin and cotter key.

 ![Fig. 4-132](image)

 CAUTION

 Make sure clevis has free movement.

2. Position the brake cable onto the cable bracket so a flange nut is positioned on either side of the bracket. Tighten securely.

 ![Fig. 4-133](image)

3. Connect the return spring to the cable bracket and to the spring actuator lever.

4. Place the brake assembly and cable bracket into position on the chain case. Secure spacers and bracket with two cap screws and lock nuts; tighten lock nuts to 3.2 kg-m (23 ft-lb).

 ![Fig. 4-134](image)

 ![Fig. 4-135](image)

 NOTE: On the Liquid Cooled models the forward cap screw is slightly longer. Secure the radiator bracket with the forward cap screw. The washer is positioned on the outside of the radiator bracket.

5. Adjust the brake.

 ![Fig. 4-136](image)

 NOTE: The flange nuts should be centered on the brake cable end.
ADJUSTING BRAKE LEVER TRAVEL

![Image of adjusting brake lever travel](image)

WARNING

Make all brake lever travel adjustments with the adjusting bolt only!

1. Rotate the brake disc alternately forward and backward while slowly compressing the brake lever.

2. At the point where the disc is locked, check the distance between the brake lever and the lever stop. The distance must be within a range of 6-13 mm (1/4-1/2 in.).

![Diagram of brake lever travel](image)

3. To decrease brake lever travel (set up the brake), bend the locking tab back and loosen the adjusting bolt jam nut. Tighten the adjusting bolt and check brake lever travel distance periodically until correct travel distance is attained.

![Diagram of adjusting brake](image)

4. To increase brake lever travel (loosen the brake), bend the locking tab back and loosen the adjusting bolt jam nut. Loosen the adjusting bolt and check brake lever travel distance periodically until correct travel distance is attained.

5. Tighten the jam nut and secure with the locking tab after adjustment is completed.

WARNING

When the brake pucks are new, there will be 6 mm (0.240 in.) clearance between the wear indicator and the adjusting bolt jam nut. When the wear indicator bottoms on the jam nut with the jam nut tight against the actuator lever, both the brake pucks MUST BE REPLACED.
SECTION 5 — ELECTRICAL SYSTEM

TABLE OF CONTENTS

Specifications (Cougar, Pantera, El Tigre 5000, & Cheetah F/C) 98
Specifications (El Tigre 6000 & Cheetah L/C) 99
Testing Ignition System .. 100
Testing Main Wiring and Safety Switches 100-101
Testing Brakelight and Headlight Dimmer Switches 101
Testing Ignition Coil Output .. 102
Testing CDI Unit Output ... 102
Testing Charge Coil Output (Cougar, Pantera, El Tigre 5000, & Cheetah F/C) 102
Testing Trigger Coil Output (Cougar, Pantera, El Tigre 5000, & Cheetah F/C) 103
Testing Charge Coil Output (El Tigre 6000 & Cheetah L/C) 103
Testing Trigger Coil Output (El Tigre 6000 & Cheetah L/C) 103
Testing Lighting Coil Output .. 103
Testing Electrical Resistances 104-106
Ignition Coil (Primary) ... 104
Ignition Coil (Secondary) .. 104
Charge Coil ... 104-105
Trigger Coil ... 105
Lighting Coil ... 105
Spark-Plug Cap ... 106
Testing Low Oil Light Sending Unit 106
Checking Ignition Timing ... 106-107
Adjusting Ignition Timing .. 107-108
Testing Voltage Regulator ... 108
Servicing Starter Motor (Pantera & El Tigre 5000 Electric Start Kit) 108-112
Removing ... 108
Disassembling .. 108-109
Cleaning and Inspecting .. 109-111
Assembling .. 111-112
Installing ... 112
Wiring Diagram (Manual Start) 113
Wiring Diagram (Electric Start) 114
Specifications
(Cougar-Pantera-El Tigre 5000-Cheetah F/C)

<table>
<thead>
<tr>
<th>Description</th>
<th>Test Value</th>
<th>Test Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignition Coil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary (Pantera &</td>
<td>0.30 ohm ± 15%</td>
<td>white/blue high tension lead</td>
</tr>
<tr>
<td>Secondary El Tigre 5000)</td>
<td>6300 ohms ± 20%</td>
<td></td>
</tr>
<tr>
<td>Ignition Coil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary (Cougar &</td>
<td>0.22 ohm ± 15%</td>
<td>white/blue high tension lead</td>
</tr>
<tr>
<td>Secondary Cheetah F/C)</td>
<td>5850 ohms ± 20%</td>
<td></td>
</tr>
<tr>
<td>Charge Coil</td>
<td>160 ohms ± 20%</td>
<td>red/white black/white</td>
</tr>
<tr>
<td>Trigger Coil</td>
<td>17 ohms ± 20%</td>
<td>black/red red/white</td>
</tr>
<tr>
<td>Lighting Coil</td>
<td>0.22 ohm ± 20%</td>
<td>yellow</td>
</tr>
<tr>
<td>Spark-Plug Cap</td>
<td>5000 ohms ± 20%</td>
<td>cap</td>
</tr>
<tr>
<td>Description</td>
<td>Output Test</td>
<td></td>
</tr>
<tr>
<td>Ignition Coil</td>
<td>85 HIGH</td>
<td>high tension lead ground</td>
</tr>
<tr>
<td>CDI Unit</td>
<td>72 HIGH</td>
<td>white/blue black/white</td>
</tr>
<tr>
<td>Charge Coil</td>
<td>38 HIGH</td>
<td>red/white black/white</td>
</tr>
<tr>
<td>Trigger Coil</td>
<td>85 LOW</td>
<td>red/white black/red</td>
</tr>
<tr>
<td>Lighting Coil</td>
<td>80 LOW</td>
<td>yellow</td>
</tr>
<tr>
<td>Ignition Timing</td>
<td>18° BTDC @ 6000 rpm</td>
<td></td>
</tr>
<tr>
<td>(Cougar/Cheetah F/C)</td>
<td>2.032 mm (0.080 in.)</td>
<td></td>
</tr>
<tr>
<td>Ignition Timing</td>
<td>24° BTDC @ 6000 rpm</td>
<td></td>
</tr>
<tr>
<td>(Pantera/El Tigre 5000)</td>
<td>3.226 mm (0.127 in.)</td>
<td></td>
</tr>
<tr>
<td>Lighting Coil Output</td>
<td>12V/150W</td>
<td></td>
</tr>
<tr>
<td>Spark Plug</td>
<td>NGK BR9ES</td>
<td></td>
</tr>
<tr>
<td>Spark-Plug Gap</td>
<td>0.7 mm (0.028 in.)</td>
<td></td>
</tr>
</tbody>
</table>

*With CDI Model 1L Tester.
**Engine timing must be checked with the engine at normal operating temperature. There is a 2 degree difference between a cold and hot engine.*
Specifications

(EI Tigre 6000-Cheetah L/C)

<table>
<thead>
<tr>
<th>Description</th>
<th>Test Value</th>
<th>Test Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resistance Test</td>
<td>+</td>
</tr>
<tr>
<td>Ignition Coil</td>
<td>0.30 ohm ± 15%</td>
<td>white/blue high tension lead</td>
</tr>
<tr>
<td>Primary</td>
<td>6300 ohms ± 20%</td>
<td>black/white high tension lead</td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge Coil</td>
<td>127.5 ohms ± 20%</td>
<td>red/white</td>
</tr>
<tr>
<td>Trigger Coil</td>
<td>46.5 ohms ± 20%</td>
<td>red/white</td>
</tr>
<tr>
<td>Lighting Coil</td>
<td>0.18 ohm ± 20%</td>
<td>yellow</td>
</tr>
<tr>
<td>Spark-Plug Cap</td>
<td>5000 ohms ± 20%</td>
<td>cap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Output Test*</th>
<th>Test Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignition Coil</td>
<td>80 HIGH</td>
<td>high tension lead</td>
</tr>
<tr>
<td>CDI Unit</td>
<td>65 HIGH</td>
<td>white/blue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>black/white</td>
</tr>
<tr>
<td>Charge Coil</td>
<td>85 HIGH</td>
<td>red/white</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ground</td>
</tr>
<tr>
<td>Trigger Coil</td>
<td>85 LOW</td>
<td>red/white</td>
</tr>
<tr>
<td></td>
<td></td>
<td>black/red</td>
</tr>
<tr>
<td>Lighting Coil</td>
<td>80 LOW</td>
<td>yellow</td>
</tr>
<tr>
<td>Lighting Coil Output</td>
<td>12V/120W</td>
<td>cap</td>
</tr>
<tr>
<td>Spark Plug</td>
<td>NGK BR10EV</td>
<td></td>
</tr>
<tr>
<td>Spark-Plug Gap</td>
<td>0.7 mm (0.028 in.)</td>
<td></td>
</tr>
<tr>
<td>Ignition Timing**</td>
<td>25° BTDC @ 6000 rpm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.854 mm (0.151 in.)</td>
<td></td>
</tr>
</tbody>
</table>

*With CDI Model 1L Tester.

**Engine timing must be checked with the engine at normal operating temperature. There is a 2 degree difference between a cold and hot engine.
Testing
Ignition System

The ignition system used on all A.F.S. models (KOKUSAN DENKI CDI) is of the "closed" type. The "closed" ignition system offers a safety advantage to the consumer in that the ignition is dependent on a complete circuit for its ground. If the circuit is broken (connection should lose contact or a connector should become pulled apart), ignition is lost and the engine will instantly stop.

The troubleshooting procedure for the standard "non-closed" ignition system cannot be used when troubleshooting the "closed" ignition system, use the following procedure.

1. Remove the spark plugs and visually check condition. Replace any fouled plug. Attach the spark plugs to the high tension leads and ground them on the cylinder head(s).

Fig. 5-1

- **NOTE:** Make sure all switches are in the ON position.

- **CAUTION**

 Never crank the engine over without grounding the spark plugs. Damage to coils and/or CDI unit may result.

2. Crank the engine over quickly and check for spark. If no spark is present, check to make sure throttle cable is properly tensioned by compressing the throttle control. While holding the throttle control in this position, crank the engine over and check for spark. If spark is now present, adjust throttle-cable tension to remove slack from the cable. If no spark is present, proceed to step 3.

3. Disconnect the main wiring harness from the engine; then using a short piece of wire, jump the black and brown in the engine four wire plug. Crank the engine over. If spark is present, the problem is either one or more of the following:

 a. Defective ignition switch
 b. Defective emergency stop switch
 c. Defective safety switches in throttle-control handle
 d. Corroded or loose wire connection at the throttle-control handle, ignition switch, or main wiring harness

To check these possible causes, proceed to Testing Main Wiring and Safety Switches. If no spark is present, proceed to Testing Ignition Coil Output.

Testing Main Wiring and Safety Switches

1. Check wire connections at ignition switch and at the throttle-control handle for tightness and cleanliness. If connections appear dirty or corroded, clean with fine sandpaper and compressed air; then connect all wires and squeeze connections with a pliers for added tightness. Using an ohmmeter, connect one lead to the black wire in the main wiring harness. Connect the other ohmmeter lead to the brown wire in the harness.

2. With all switches in the ON position, the meter must read CLOSED.

3. If meter reads OPEN, disconnect the ignition switch and connect the ohmmeter leads to each of the probes on the back of the switch. If the meter reads OPEN (with switch in ON position), replace the switch. If the meter reads CLOSED, proceed to step 4.

4. Disconnect the two connectors from the throttle-control handle. Connect one ohmmeter lead to each of the two probes located on the front end of the throttle control. With the emergency stop switch, located on top of the control, in the ON (pulled-up) position, the meter must read CLOSED.
5. Again, check to be sure throttle cable is properly tensioned by compressing the throttle lever and if the needle goes from OPEN to CLOSED, throttle-cable slack must be removed. If the meter reads OPEN, replace the throttle control. If the meter reads CLOSED, the problem is in the main wiring harness; therefore, replace the main wiring harness.

Testing Brakelight and Headlight Dimmer Switches

NOTE: On the Cheetah models, disconnect the four prong plug and use the color codes listed in the chart to test the switches. Removal of the handlebar pad is not necessary.

1. Cut cable ties and roll pad forward exposing wires.

2. Disconnect the wire plug from the brake and headlight dimmer switches.

3. Beginning from the front, the four terminals correspond to the following chart:

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Corresponding Wire Color</th>
<th>Wire Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yellow</td>
<td>Power Supply</td>
</tr>
<tr>
<td>2</td>
<td>Blue</td>
<td>Headlight - High Beam</td>
</tr>
<tr>
<td>3</td>
<td>White</td>
<td>Headlight - Low Beam</td>
</tr>
<tr>
<td>4</td>
<td>Red</td>
<td>Brakelight</td>
</tr>
</tbody>
</table>

4. To test the brakelight switch, connect one ohmmeter lead to the number 1 terminal; then connect the other lead to the number 4 terminal.

5. With the brake lever compressed, the meter must read CLOSED. With the brake lever released, the meter must read OPEN. If the meter does not read as specified, the brakelight switch is defective and must be replaced.

6. To test the headlight dimmer switch, use the tester connections indicated in the following chart. If the meter does not read as specified, the headlight dimmer switch is defective and must be replaced.

<table>
<thead>
<tr>
<th>Position</th>
<th>Lead to Terminal</th>
<th>Lead to Terminal</th>
<th>Meter Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Beam</td>
<td>1</td>
<td>2</td>
<td>CLOSED</td>
</tr>
<tr>
<td>High Beam</td>
<td>1</td>
<td>3</td>
<td>OPEN</td>
</tr>
<tr>
<td>Low Beam</td>
<td>1</td>
<td>2</td>
<td>OPEN</td>
</tr>
<tr>
<td>Low Beam</td>
<td>1</td>
<td>3</td>
<td>CLOSED</td>
</tr>
</tbody>
</table>

NOTE: If either the headlight dimmer switch or the brakelight switch is defective, the switch control must be replaced in its entirety.
Testing Ignition Coil Output

Before testing ignition coil output after testing the main wiring harness and safety switches, all wiring harnesses must be connected. Also, check to be sure all switches (ignition switch and emergency stop switch) are in the ON position. Ignition coil output may be tested by using either one of the following procedures:

To test ignition coil output using the Electro-Specialties Model 1L Tester, use the following procedure:

1. Remove the resistor spark plug from the MAG-side cylinder and the spark-plug cap; then install an NGK B8EV plug with a non-resistor-type spark-plug cap (or a metal connector).
2. Connect the MM-1 adapter to the spark-plug wire. Attach the red tester lead to the engine.

CAUTION
Spark plugs must be installed or damage to the coils and/or CDI unit may result.

3. On the El Tigre 6000 and Cheetah L/C, set the tester on 80 HIGH scale. On the Cougar, El Tigre 5000, Pantera, and Cheetah F/C, set the tester on the 85 HIGH scale. Crank the engine over quickly. If the tester light illuminates, output is satisfactory. If the tester light fails to illuminate, proceed to Testing CDI Unit Output. Test 3 times for conclusive results.

To visually test ignition coil output, use the following procedure:

1. Remove the spark plugs from the cylinders; connect to the high tension leads and ground on the cylinder head(s).
2. Crank the engine over quickly and inspect for a bright blue spark. If a bright blue spark is present, ignition coil output is satisfactory. If no spark is present, proceed to Testing CDI Unit Output.

Testing CDI Unit Output

1. Disconnect the double-wire plug from the CDI unit to the ignition coil.
2. Using the wire adapter harness, connect the yellow tester lead to the white/blue lead in the double-wire plug; connect the red tester lead to the black/white lead in the double-wire plug.
3. On the El Tigre 5000, Cougar, Pantera, and Cheetah F/C, set the tester on 72 HIGH scale. On the El Tigre 6000 and Cheetah L/C, set the tester on 65 HIGH scale. Crank the engine over quickly. If the tester light illuminates, CDI unit output is satisfactory. This pinpoints the ignition coil, spark plugs, or spark-plug caps as being defective if ignition coil output was not satisfactory. Test 3 times for conclusive results. Before replacing the ignition coil (if the ignition coil seems to be the problem), make sure its connections are not corroded or loose. If the tester light fails to illuminate, proceed to Testing Charge Coil Output.

Testing Charge Coil Output (Cougar-Pantera-El Tigre 5000-Cheetah F/C)

1. Disconnect the triple-wire plug from the CDI unit to the magneto.
2. Connect the red tester lead to the red/white wire in the triple-wire plug; connect the yellow tester lead to the black/white lead.
3. Set the tester on 38 HIGH scale. Crank the engine over quickly. If the tester light illuminates, charge coil output is satisfactory; then proceed to Testing Trigger Coil Output. If the tester light fails to illuminate, replace the charge coil. Test 3 times for conclusive results.
Testing Trigger Coil Output (Cougar-Pantera-El Tigre 5000-Cheetah F/C)

1. Disconnect the triple-wire plug from the CDI unit to the magneto.
2. Connect the red tester lead to the red/white wire from the magneto; connect the yellow tester lead to the black/red wire from the magneto.
3. Set the tester on 85 LOW scale. Crank the engine over quickly. If the tester light illuminates, trigger coil output is satisfactory. If the tester light fails to illuminate, replace the trigger coil. Test 3 times for conclusive results.

NOTE: If the charge and trigger coils tested out satisfactory but the tester light did not illuminate in the CDI Unit Output Test, replace the CDI unit.

Testing Charge Coil Output (El Tigre 6000-Cheetah L/C)

1. Disconnect the triple-wire plug from the CDI unit to the magneto.
2. Connect the red tester lead to the red/white wire in the triple-wire plug; connect the yellow tester to an engine ground.
3. Set the tester on 85 HIGH scale. Crank the engine over quickly. If the tester light illuminates, charge coil output is satisfactory; then proceed to Testing Trigger Coil Output. If the tester light fails to illuminate, replace the charge coil. Test 3 times for conclusive results.

Testing Lighting Coil Output

1. Disconnect the four-wire plug from the magneto.
2. Connect the red tester lead to one of the yellow wires; connect the yellow tester to the other yellow wire.
3. Set the tester on 80 LOW scale.
4. Crank the engine over quickly. If the tester light illuminates, lighting coil output is satisfactory. Test 3 times for conclusive results.
5. If the tester light fails to illuminate, the lighting coil wires should be checked for breaks, corrosion, and looseness. If the connections are tight and free of corrosion, replace the lighting coil.
Testing
Electrical Resistances

NOTE: All resistance tests of the engine electrical components can be made using a multimeter.

Replace any component that does not have a test value within specifications.

NOTE: Procedures designated "A" are for testing the ignition coil for the Cougar and Cheetah F/C; procedures designated "B" are for the El Tigre 6000, Pantera, Cheetah L/C, and El Tigre 5000.

IGNITION COIL (PRIMARY)
1. Disconnect the double-wire plug from the CDI unit to the ignition coil.
2. Set the selector on the X1 position; then touch the leads and zero the meter.
3. Connect one meter lead to the white/blue lead; connect the other meter lead to the black/white lead.

Fig. 5-5

A. Ignition coil primary resistance must be 0.22 ohm ± 15%.
B. Ignition coil primary resistance must be 0.30 ohm ± 15%.

IGNITION COIL (SECONDARY)
1. Remove the spark-plug caps from the high tension wires.
2. Set the selector on the X1K position; then touch the leads and zero the meter.
3. Connect one meter lead to each high tension wire.

Fig. 5-6

A. Ignition coil secondary resistance must be 5850 ohms ± 20%.
B. Ignition coil secondary resistance must be 6300 ohms ± 20%.

NOTE: Procedures designated "A" are for testing the charge coil, trigger coil, and lighting coil for the Cougar, Pantera, El Tigre 5000, and Cheetah F/C; procedures designated "B" are for the El Tigre 6000 and Cheetah L/C.

CHARGE COIL
1. Disconnect the triple-wire plug from the CDI unit to the magneto.
2. Set the selector on the X100 position; then touch the leads and zero the meter.
3. Connect one meter lead to the red/white lead; connect the other meter lead to the black/white lead.

Fig. 5-7

4. A. Charge coil resistance must be 160 ohms ± 20%.
B. Charge coil resistance must be 127.5 ohms ± 20%.

TRIGGER COIL
1. Disconnect the triple-wire plug from the CDI unit to the magneto.
2. Set the selector on the X10 position; then touch the leads and zero the meter.
3. Connect one meter lead to the black/red lead; connect the other meter lead to the red/white lead.

A. Trigger coil resistance must be 17 ohms ± 20%.

B. Trigger coil resistance must be 46.5 ohms ± 20%.

LIGHTING COIL
1. Disconnect main wiring harness from the engine.
2. Set the selector on the X1 position; then touch the leads and zero the meter.
3. Connect one meter lead to a yellow lead; connect the other meter lead to the other yellow lead.
4. A. Lighting coil resistance must be 0.22 ohm ± 20%.
 B. Lighting coil resistance must be 0.18 ohm ± 20%.
SPARK-PLUG CAP
1. Remove spark-plug cap from high tension wire.
2. Set the selector on the X1K position; then touch the leads and zero the meter.
3. Connect one meter lead to one end of the cap; connect the other meter lead to the other end of the cap.

4. Spark-plug cap resistance must be 5000 ohms ± 20%.

Testing Low Oil Light Sending Unit

The low oil light sending unit is a magnetic switch. Its operation is based on a doughnut magnet located around the inside diameter of a ½ in. hole in a plastic float. The switch, located in the stem of the sending unit, is positioned through the hole in the float. When the float drops to the lower part of the stem, the magnet closes the electrical contacts (located in the stem) allowing current to pass on to the light in the console.

If the sending unit should fail, it must be replaced. To test the sending unit, use the following procedure:
1. Remove the sending unit from the oil tank by twisting and pulling upwards. Wipe oil from the sending unit with a cloth.
2. Unplug the sending unit wires from the wiring harness.
3. Using an ohmmeter, set the scale selector knob on X1K position.
4. Touch each of the meter leads to one of the two wires coming from the sending unit. With the sending unit in its normal position (float end down), the meter should read CLOSED.
5. If the meter reads OPEN, double check to make sure you have made good contact with each of the wires coming from the sending unit. If the meter still reads OPEN, replace the sending unit.
6. While maintaining contact between the meter leads and the sending unit, raise the float up. The meter must read OPEN. If the meter reads CLOSED, replace the sending unit.
7. If the sending unit tested out satisfactory but the light in the console doesn't illuminate with only a small amount of oil in the oil tank, check the bulb in the console.
8. If the bulb is in good condition, check for voltage at the connection where the sending unit plugs into the wiring harness. Using a voltmeter set on the 50 ACV scale, start the engine and allow it to idle. Touch the red lead of the voltmeter to the red wire in the two prong connector. Touch the black lead to the black lead in the wiring harness. At idle, the meter should read 5 to 6 volts (AC). If no voltage is present, but the lights on the snowmobile operate normally, either check the wiring harness for a broken wire or replace the harness.

Checking Ignition Timing

NOTE: Procedures designated “A” are for the Cougar, and Cheetah F/C; procedures designated “B” are for the El Tigre, Pantera, and Cheetah L/C.

1. A. Remove the screws and lock washers securing the fan belt cover.
 B. Remove the bolt and lock washer securing the fix plate and cap to the magneto case; then remove the fix plate and cap.
2. Connect a timing light and a tachometer to the MAG-side spark-plug lead.

3. A. Using a shielded safety stand, raise the rear of the snowmobile off the floor and start the engine. Gradually increase the engine speed to 6000 rpm; the pointer should align with the 18° BTDC timing mark on the flywheel.

B. Using a shielded safety stand, raise the rear of the snowmobile off the floor and start the engine. Gradually increase the engine speed to 6000 rpm; the pointer should align with the 25° BTDC (El Tigre 6000 and Cheetah L/C) or 24° BTDC (Pantera and El Tigre 5000) timing mark on the flywheel.

4. If timing is not correct, adjust timing.

5. A. Install fan belt cover and secure with screws and lock washers.

B. Install cap and fix plate; then secure with a bolt and lock washer.

Adjusting Ignition Timing

NOTE: Procedures designated “A” are for the Cougar and Cheetah F/C; procedures designated “B” are for the El Tigre, Pantera, and Cheetah L/C.

1. A. Remove the recoil, starter pulley, and fan drive pulley.

B. Remove the recoil, starter pulley, and water pump drive pulley.

2. Loosen the two screws securing the stator plate and rotate the stator plate in the proper direction to attain correct timing.

NOTE: All timing specifications are given for engines at operating temperature. Before checking timing, run the engine long enough (4-5 minutes) to reach normal operating temperature. This is for all models.
NOTE: Rotate the stator plate clockwise to retard the timing or counterclockwise to advance the timing. The stamped marks on the stator plate at the upper socket-head cap screw mounting hole can be used for timing.

3. Tighten the screws securing the stator plate.

4. A. Install the fan drive pulley (making sure the fan belt is properly positioned), starter pulley, and the recoil.
 B. Install the water pump drive pulley, starter pulley, and recoil.

5. Affirm timing for accuracy and adjust if necessary.

Testing Voltage Regulator

1. Using a shielded safety stand, raise the rear of the snowmobile off the floor.

2. Using a multimeter, connect the red tester lead to a yellow lead and the black tester lead to a brown lead in the accessory harness connector.

3. Connect a tachometer to the engine to monitor rpm.

4. Set the selector on the 25 ACV position; then start the engine and allow it to idle. The meter must read 11-13 volts.

5. Increase engine speed to 2500-2700 rpm. The meter must read 11-13 volts. If the meter reads more than 13 volts, replace the voltage regulator.

Servicing Starter Motor (Pantera & El Tigre 5000 Electric Start Kit)

REMOVING

1. Disconnect the battery.

2. Remove the nut and lock washer securing the positive cable; then remove cable.

3. Remove the two bolts and lock washers securing front cover to the magneto case.

4. Remove the two bolts and lock washers securing starter-motor bracket to the crankcase; then remove the starter motor w/bracket.

5. Remove the two nuts and lock washers securing the bracket to the starter motor; then remove the bracket.

DISASSEMBLING

1. Remove the two screws and lock washers securing dust cover; then remove cover and gasket.
2. Remove the two long bolts and lock washers; then loosen the terminal nut.

3. Remove the E-ring and washer securing the armature shaft; then remove armature shaft assembly and rear cover.

4. Slide the stopper down the shaft, remove the retaining ring, and remove the stopper and spring.

5. Remove the pinion assembly and front cover. Account for any washers.

CLEANING AND INSPECTING

- **NOTE**: Whenever a part is worn excessively, cracked, defective, or damaged in any way, replacement is necessary.

1. Thoroughly clean all components with a clean cloth and compressed air.

2. Inspect all threaded areas for damaged or stripped threads.

3. Inspect the brush holder assembly and brushes for damage or wear.

- **NOTE**: Using a caliper, measure the length of the brushes. If any brush measurement is less than 7.5 mm (0.30 in.), replacement is necessary.
4. Inspect all wires for cracks, wear, or damage.

5. Inspect the commutator end of the armature for any burned spots or damage.

NOTE: If the commutator is only slightly burned or damaged, it may be repaired with #00 grit sandpaper. If it is severely burned or damaged, it may have to be turned down in a lathe.

CAUTION

DO NOT use emery cloth because metallic particles may become imbedded in the commutator.

6. Inspect the commutator end of the armature for buildup in the grooves. Buildup in the grooves may be removed by carefully undercutting the grooves with a properly-ground hacksaw blade.

7. Inspect the armature for damage, wear, or signs of contact with the field magnets.

8. Inspect the pinion assembly for damage or wear.

9. Inspect the armature for shorting. Use a multimeter and the following procedure:

a. Set the selector on the X1K position; then touch the leads and zero the meter.

b. Touch the black tester lead to the armature shaft.

c. Using the red tester lead, probe the commutator end of the armature. The meter indicator should not move. If the indicator moves, the armature is grounded and must be replaced.

10. Inspect the field winding for shorting. Use a multimeter and the following procedure:

 NOTE: The brush holder must not contact the frame and field assembly during this test.

 a. Set the selector on the X1K position; then touch the leads and zero the meter.

b. Touch the red tester lead to the insulated starter terminal.
c. Touch the black tester lead to the frame and field assembly. The meter indicator should not move. If the indicator moves, field winding is grounded and must be replaced.

11. Inspect the ground of the ground brushes using a multimeter and the following procedure:
 a. Set the selector on the X1K position; then touch the leads and zero the meter.
 b. Touch the black tester lead to a ground brush.
 c. Touch the red tester lead to the brush holder. The meter indicator should move to the right. If the indicator does not move to the right, either solder the ground-brush wire to the holder or replace the brush assembly.

 NOTE: Use only a rosin-core solder when soldering the brush connections.

d. Perform this test on the other ground brush.

12. Inspect the armature for shorting. Use a “growler” and the following procedure:
 a. Place the armature in the “growler”.
 b. While holding a metal strip over the armature, rotate the armature an entire revolution. If the metal strip vibrates at any point on the armature, the armature is shorted and must be replaced.

ASSEMBLING

1. In turn on the armature shaft, place the washers, front cover, and pinion assembly.
 NOTE: Make sure the fiber washer is positioned next to the cover.

2. Place the spring and stopper into position; then slide the stopper down the shaft and install the retaining ring.

3. Slide the armature assembly into the yoke; then compress the brushes and slide brush holder assembly onto the commutator end of the armature.

4. Place the rear cover into position and secure with the washer and E-ring.
5. Place the two long bolts and lock washers into position and tighten securely. Tighten the terminal nut.

Fig. 6-25

6. Place the dust cover and gasket into position and secure with two screws and lock washers.

Fig. 5-26

INSTALLING

1. Place the bracket into position on the starter motor and secure with two nuts and lock washers.

2. Place the starter motor w/bracket into position and secure the bracket to the crankcase with two bolts and lock washers.

3. Secure the front cover to the magneto case with two bolts and lock washers.

4. Place the positive cable onto the terminal and secure with a nut and lock washer.

5. Connect the battery.
Section 6 — Steering and Body

Table of Contents

Removing and Disassembling
- Throttle Switch .. 116

Assembling and Installing
- Throttle Switch .. 116-117

Removing and Disassembling Brake Control 117

Assembling and Installing Brake Control 117-118

Removing Steering Post 118-119

Inspecting Steering Post 119

Installing Steering Post 119-120

Removing Ski .. 120

Inspecting Ski .. 120

Installing Ski ... 120

Removing and Disassembling Tie Rods 121

Inspecting Tie Rods 121

Assembling and Installing Tie Rods 121-122

Removing and Inspecting Spindle 122

Installing Spindle 122-123

Checking and Adjusting Ski Alignment 123-124

Removing and Inspecting
 - Upper A-Frame Arm 124-125
 - Replacing Bushings 125-126
 - Lower A-Frame Arm 126-127

Installing Lower Arm 127

Installing Upper Arm 128

Replacing Front Suspension 128-129

Removing Sway Bar 129

Inspecting Sway Bar and Sway Bar Arm 129-130

Assembling Sway Bar 130

Removing Console 131

Installing Console 132

Removing and Installing
 - Tunnel Components 132-136
 - Removing Toolbox and Taillight 132
 - Installing Toolbox and Taillight 133
 - Removing Rear Bumper, End Plate, Cap, and Snowflap 133
 - Installing Rear Bumper, End Plate, Cap, and Snowflap 133
 - Removing Belly Pan, Hood, and Front Bumper 133-134
 - Installing Belly Pan, Hood, and Front Bumper 133-134
 - Removing Windshield and Headlight 136
 - Installing Windshield and Headlight 136
 - Adjusting Headlight Aim 137
Removing and Disassembling Throttle Switch

1. Remove the cable ties securing the handlebar pad; then roll the pad back exposing control wires and throttle cable.

2. Using a sharp knife, cut the grip off the handlebar. Using a solvent, clean the old adhesive from the handlebar.

3. Remove the retaining ring, seals, and pin securing throttle lever to the throttle switch.

 NOTE: On the Cheetah models, account for a small flat washer found under the retaining ring.

 ![Fig. 6-1](image1)

4. Disconnect throttle cable from the seat in throttle lever and remove lever; then remove the retaining ring and slide cable free of throttle switch.

5. Disconnect harness from throttle switch.

 ![Fig. 6-2](image2)

Assembling and Installing Throttle Switch

1. Slide throttle switch onto the handlebar; then secure with a tapping screw.

2. Slide throttle cable into groove of throttle switch and secure with retaining ring.

3. Connect end of throttle cable to the seat of throttle lever.

4. Secure throttle lever with pin, seals, and retaining ring.

 NOTE: On the Cheetah models, install the small flat washer under the E-clip.

 ![Fig. 6-4](image3)

5. Remove the tapping screw securing throttle switch on handlebar; then slide switch off handlebar.
NOTE: Apply a light coat of water-resistant grease to the seals before installing seals.

5. Connect the throttle switch harness to the throttle switch.

- NOTE: Switch harness must be properly connected. If switch harness is not connected, the engine will not start.

![WARNING]

Compress throttle control lever to ensure free movement. If throttle cable sticks or binds, correct the problem before the snowmobile is operated.

6. Apply Handlebar Adhesive to the bore of the handlebar grip and using a rubber hammer, drive the grip into position.

![WARNING]

The handlebar adhesive is extremely flammable. The product contains acetone and vapors released can be easily ignited. Keep away from heat, sparks, and open flame. Use only in area with adequate ventilation. Avoid prolonged breathing of vapor. Avoid eye and skin contact. Keep container closed when not in use.

7. Place the handlebar pad into position and secure with cable ties.

Removing and Disassembling Brake Control

1. Remove the cable ties securing the handlebar pad; then roll the pad forward exposing control wires and cables.

2. Using a sharp knife, cut the grip off the handlebar. Using a solvent, clean the old adhesive from the handlebar.

3. Remove the retaining ring and pin securing brake lever and parking brake actuator to brake control. Remove the parking brake actuator and parking brake actuator spring.

- NOTE: On the Cheetah models, remove the retaining ring and pin to remove the parking brake actuator and spring.

4. Disconnect brake cable from the seat in brake lever and remove lever; then slide brake cable free of brake control.

5. Disconnect wiring harness from brake control.

6. Remove the machine screw securing brake control to the handlebar; then slide brake control off handlebar.

Assembling and Installing Brake Control

Fig. 6-6

Fig. 6-7

Fig. 6-8

El Tigre-Cougar-Pantera

KEY
1. Handlebar Grip
2. Brake Lever
3. Brake Control
4. Pin
5. Retaining Ring
6. Machine Screw
7. Parking Brake Actuator
8. Spring
1. Slide brake control onto the handlebar; then secure with a machine screw.

6. Apply Handlebar Adhesive to the bore of the handlebar grip and using a rubber hammer, drive the grip into position.

![WARNING]

The handlebar adhesive is extremely flammable. The product contains acetone and vapors released can be easily ignited. Keep away from heat, sparks, and open flame. Use only in area with adequate ventilation. Avoid prolonged breathing of vapor. Avoid eye and skin contact. Keep container closed when not in use.

7. Place the handlebar pad into position and secure with cable ties.

Removing Steering Post

NOTE: For convenience, the engine may be removed for this procedure.

1. Remove the two carriage bolts and lock nuts securing steering-post bracket to the tunnel.

8. Apply Handlebar Adhesive to the bore of the handlebar grip and using a rubber hammer, drive the grip into position.

2. Remove the two bolts and lock nuts securing the tie-rod ends to the steering post.

5. Connect the wiring harness to the brake control.
3. Remove the four bolts and lock nuts securing the caps to the block; then remove the caps and the handlebar assembly. Account for the adjusting block.

Inspecting Steering Post

NOTE: Whenever a part is worn excessively, cracked, defective, or damaged in any way, replacement is necessary.

1. Inspect all welded areas for cracks or deterioration.
2. Inspect steering post and steering-post brackets for cracks, bends, or wear.

Installing Steering Post

1. Place the steering post into position and secure the upper steering-post bracket and backing plate with the two carriage bolts and lock nuts. Tighten to 1.4 kg-m (10 ft-lb).

2. Secure the lower steering-post bracket to the tunnel with the carriage bolts and lock nuts. Tighten to 2.5 kg-m (18 ft-lb).

3. Lubricate the steering-post brackets with a light oil. Check steering post for free movement.

4. Place the adjusting block, handlebar assembly, and caps into position; then secure with four bolts and lock nuts. Tighten the bolts and lock nuts evenly to 1.4 kg-m (10 ft-lb).
5. Secure the tie-rod ends to the steering post with two bolts (coated with LOCTITE LOCK N' SEAL) and lock nuts. Tighten and then torque to 3.2 kg·m (23 ft·lb).

NOTE: Tie rods must be attached to the lower side of the steering post.

Installing Ski

2. Inspect ski for abnormal bends or cracks.
3. Inspect all bolts for wear and damage.

Removing Ski

1. Remove the lock nut; then remove the bolt securing ski assembly to the spindle. Remove ski. Account for the damper and inner axle.

Inspecting Ski

1. Inspect welded areas for cracks or deterioration.

NOTE: Whenever a part is worn excessively, cracked, defective, or damaged in any way, replacement is necessary.

2. Inspect ski for abnormal bends or cracks.
3. Inspect all bolts for wear and damage.

NOTE: All horizontal lock nuts are to be positioned toward the center of the snowmobile.

1. Place the front of the machine on a support stand to provide ample room for installing ski on spindle assembly.

2. Apply a light coat of grease to the axle surface and position in spindle.

3. Install rubber damper into bottom of spindle.

4. Position the ski onto the spindle. Apply a light coat of grease to the bolt and install. Always start the bolt from the outside and secure with lock nut torqued to 2.9-3.6 kg·m (21-26 ft·lb).
Removing and Disassembling Tie Rods

1. Remove the lock nuts and washers securing tie-rod ends to bell crank; then thread the tie-rod ends out of the bell crank.

2. Remove the lock nuts and washers securing tie-rod ends to the steering post.

3. Remove tie rod assemblies.

4. Loosen the jam nuts securing the tie-rod adjusting studs.

5. Remove tie-rod ends from the adjusting studs; then remove adjusting studs w/jam nuts.

6. Remove jam nuts from the adjusting studs.

7. Remove the lock nuts securing the fixed tie rod to the spindle and bell crank. Thread the tie-rod end out of the bell crank and separate the tie rod from the spindle and bell crank.

Inspecting Tie Rods

1. Inspect tie rods for damaged threads or wear.

2. Inspect tie-rod ends for cracks or wear.

Assembling and Installing Tie Rods

1. Install jam nuts on the adjusting studs.

2. Install the adjusting studs on the tie rods; then install tie-rod ends on the adjusting studs.

3. Place tie-rod assemblies into position making sure adjusting studs are positioned toward the bell crank.

4. Secure tie-rod ends to steering post with washers and lock nuts. Tighten and then torque to 3.2 kg-m (23 ft-lb). Coat threads with LOCTITE LOCK N' SEAL before tightening.

5. Thread tie-rod ends into the bell crank; tighten securely. Install the washers and lock nuts. Tighten to 3.2 kg-m (23 ft-lb).

6. Place the fixed tie rod into position; then thread the tie-rod end into the bell crank and tighten securely. Place the O-ring and washer onto the other tie-rod end and attach to spindle arm from the bottom side. The self-locking nut should be located on the top side of the spindle arm and torqued to 3.2 kg-m (23 ft-lb). Install the washer and lock nut on the tie-rod end attached to the bell crank and tighten to 3.2 kg-m (23 ft-lb).

CAUTION

Make sure the O-ring is positioned on the fixed tie-rod end that attaches to the spindle.

NOTE: The engine must be removed for this procedure.

NOTE: Whenever a part is worn excessively, cracked, defective, or damaged in any way, replacement is necessary.

NOTE: Since each adjusting stud has both right and left hand thread, each jam nut can be installed on only its end.

NOTE: The tie-rod ends must be attached to the lower side of the steering post.

NOTE: The tie-rod ends must be attached to the upper side of the bell crank.
7. Check ski alignment, adjust as necessary.

Removing & Inspecting Spindle

1. Remove the ski.
2. Remove the lock nut securing the tie-rod to the spindle arm.
3. Remove the two bolts that secure the spindle assembly to the A-frame arms. Remove the spindle.
4. With the spindle removed, check spindle bushing wear. Position the spindle in a vise to secure it for inspection. Grasp the spindle arm and rotate the arm from left to right. The movement should be smooth and free.
5. If the spindle movement is rough or binding, grease the spindle with a good low-temperature grease and again rotate the spindle from left to right. If the movement remains rough, replacement will be necessary. When greasing the spindle, pump in enough grease so it can be seen coming out at both the top and bottom of the spindle.
6. Inspect all welds for any signs of cracking.

Installing Spindle

1. Lightly coat each axle with a good low-temperature grease and position in the A-frame arm.
2. Position the top arm into the spindle and secure with a bolt and lock nut. The bolt should be installed from the front. Perform the same step for securing the lower portion of the spindle. Torque both lock nuts to 2.9-3.6 kg-m (21-26 ft-lb).
3. Install ski (see Installing Ski section).
4. Place O-ring and lock washer on tie-rod ball joint stud and install to spindle arm from the bottom side. Secure tie-rod end to the spindle arm with lock nut tightened to 3.2 kg-m (23 ft-lb). Coat threads of tie-rod ball joint with LOCTITE STUD N BEARING MOUNT (red).
5. Check ski alignment, adjust as necessary.
Checking & Adjusting Ski Alignment

Fig. 6-25

NOTE: If adjustment becomes necessary, it is recommended that the four motor mounts be removed and the engine raised up 3 to 4 inches. Using a block of wood, block engine up securely.

1. Turn the handlebar to the straight-ahead position.

2. Place a long straightedge against the outside edge of the track so it lies along the inside edge of the left ski.

NOTE: The straightedge should be long enough to extend from the back of the track to the front of the ski.

3. Measure the distance from the straightedge to the edge of the ski in two places. Take one measurement from the forward end and the other from the rearward end.
NOTE: Make sure measurements are taken on the flat surface of the ski edge and not on a bent or rounded edge.

4. The measurement from the forward and rearward ends of the ski edge either must be equal or the forward measurement must not exceed the rearward measurement by more than 3 mm (1/8 in.).

5. If an adjustment is necessary, only adjust those tie-rods located under the engine plate. Never change the length or make any adjustments on the fixed tie-rods (that attach to the spindle arms).

6. After making necessary adjustments, apply LOCTITE LOCK N' SEAL to the threads of the stud and tighten the jam nuts.

WARNING

Neglecting to lock the adjusting stud by tightening the jam nuts may cause loss of snowmobile control and possible personal injury. Also, the exposed length of the adjusting stud must not exceed 44.5 mm (1 3/4 in.) as at least 13 mm (1/2 in.) of the adjusting stud must be threaded into the tie rod and the tie rod end to assure maximum steering linkage strength.

7. Repeat procedure for the right side ski.

NOTE: Ski alignment is correct when the skis are parallel to each other (equal measurements front and rear) or when the skis have a maximum of 6 mm (¼ in.) “toe out” (front measurement 6 mm (¼ in.) more than rear measurement).

Removing & Inspecting Upper A-Frame Arm

NOTE: The A-frame arms can be removed without removing the engine. It is recommended to remove the drive clutch if the left side upper A-frame arm is removed and the exhaust expansion chambers or pulse charger if the right side upper A-frame arm is to be removed.

1. Place a support stand under the front-end assembly to get both skis off the floor.

2. Remove the spindle.

3. Remove the bolt securing the front shock to the upper A-frame arm and slide the shock free of the arm.
4. Remove the sway bar linkage by rotating its mounting stud counterclockwise.

5. Remove the bolt securing the upper arm to the front end assembly. Using a long drift-punch, push the bolt free of the upper arm. Account for the two axle inserts and center spacer.

6. Slide the two axles free of the upper arm so it and its bushings can be inspected.

7. Inspect all the upper arm welds for signs of cracking.

8. Visually inspect the upper arm for signs of bending or twisting. If the arm shows signs of being twisted, bent or welds starting to separate, replace the arm.

9. Inspect all bushings for signs of fraying, tearing or badly worn areas. If any of these are found, replace the bushing (see Replacing Bushing section).

NOTE: All bushings are made of a self-lubricating bearing material woven of Teflon. Although this material is very strong, it is possible to tear or nick the bearing surface if mishandled. The bearing material has a wall thickness of 0.060 in.

Replacing Bushings

1. To remove bushings from the wider end of the arm, use a long drift-punch and drive the bushings out of the arm while supporting the end of the arm in a large vise. To prevent the vise jaws from damaging the sides of the arm, place a piece of soft wood on both sides of the arm before closing the vise.

2. To remove the bushing from the narrow end of the arm, again support the arm in a vise with pieces of wood on both sides of the arm to protect it from the vise jaws.

3. Drive the bushings from the arm using a drift punch.
NOTE: Before installing new bushings, inspect the arm for nicks in the area where the new bushing is to be pressed into. If any nicks or rough surfaces are found, smoothen using emery paper or a fine file.

4. Position the small arm end and new bushing squarely between vise jaws and slowly close the vise. Using the vise as a press, press the bushing into the arm until the bushing is flush with the edge of the arm bore.

5. Using a socket or suitable tool of a smaller diameter, press the bushing an additional 4.7 mm (3/16 in.) into the bushing bore. There should now be equal space at either end of the bushing.

6. Using the vise once again as a press, press the new bushings into both ends of the upper or lower arm at the wide end. Two bushings are used at this end of the arm and they should be pressed into the arm so they are flush with the outer edge of the bore.

Removing & Inspecting Lower A-Frame Arm

NOTE: Removing the exhaust expansion chambers or pulse charger will make the following procedure easier to accomplish. Also, before removing the lower left A-frame arm, remove the front motor mounts and lift the engine to provide ample room for removing the lock nut from the bolt that secures the lower arm to the front end assembly.

1. Place a support stand under the front end assembly to get both skis off the floor.

2. Remove the spindle.
3. Remove the lock nut (found under the engine plate) from the bolt securing the lower arm.

4. Grasp the bolt head with a pair of vise-grip pliers and rotate the bolt left to right while pulling outward at the same time. Pull the bolt free and remove the arm.

5. Remove the inner axle from the lower arm.

6. Inspect all welds for signs of cracking or separation.

7. Visually inspect the lower arm for signs of bending or twisting. If the arm shows any signs of being bent, twisted or any poor welds are evident, replace the arm.

8. Inspect all bushings for signs of fraying, tearing, and worn areas.

Installing Lower Arm

1. Position the inner spacer into one of the outer axles. Using a soft hammer, tap the spacer firmly into axle recess. Slide axle and spacer into wide portion of lower arm and install the remaining axle from the opposite side. Use bolt to align if needed.

2. Carefully slide the arm into position and secure with bolt and lock nut. Torque nut to 3.2 kg-m (23 ft-lb). Install bolt from the front.

 NOTE: Install lower arm with its angled side positioned forward. Using a long drift punch, align the arm with its mounting hole and install the mounting bolt from the front.

3. Swing the arm up and down to make sure it moves smoothly without binding.
Installing Upper Arm

1. Insert the upper spacer into one of the outer axles. Firmly tap into position; then insert axle and spacer into upper arm. From the opposite side, install the remaining axle and seat it onto spacer.

2. Position upper arm in front end assembly and using a long drift punch, align with mounting hole. Secure the upper arm with a bolt and lock nut torqued to 3.2 kg-m (23 ft-lb). Install the bolt from the front.

3. Swing the arm up and down to make sure it moves freely.

4. Install the spindle and ski; then install the sway bar linkage. Coat the mounting stud threads with LOCTITE LOCK N' SEAL and attach it to the upper arm.

Replacing Front Suspension

NOTE: It will be necessary to remove the expansion chambers or pulse charger before shock removal procedure is started.

1. Position a support under front end assembly taking all the pressure off the skis.

2. Remove the lock nut from the bolt securing the top of the shock to the upper A-frame arm; then remove bolt. Account for the axle.

3. Remove the lock nut from the bolt securing the lower end of the shock to the front end assembly. Push the bolt inward until the shock is free to be lifted clear of the front end. Account for the spacers and an axle.

4. Inspect shock-absorber body and seal areas for signs of fluid leakage.
5. Inspect shock mounting hardware, bushing, axle spacer, and mounting holes for damage or wear.

6. Remove the spring from the shock body by compressing the spring and removing the spring retainer from the top of the spring. Inspect shock absorber by quickly compressing and extending the plunger while firmly holding the shock body. Resistance must be felt in both directions.

7. If the shock appears to be in good condition, re-assemble the washer, short spring, spring spacer, long spring and spring retainer on the shock body. This can be done by placing the bottom of the shock in a vise and compressing the springs with one hand, while inserting the spring retainer with the other.

8. Place the lower axle into position with a spacer on either side.

9. Place the lower end of the shock into position in the front end assembly and secure with bolt and lock nut torqued 3.2 kg-m (23 ft-lb).

10. Insert the upper axle into the shock eyelet. Pivot the shock towards the upper A-frame arm and secure with bolt and lock nut torqued 3.2 kg-m (23 ft-lb). Install upper bolt from the front.

Removing Sway Bar

Fig. 6-43

NOTE: The sway bar adjustment is used to level the front end assembly. It has been preset at the factory and shouldn't need any further adjustment unless disassembly should become necessary. If disassembly is necessary, follow the procedure below for reassembly and adjusting purposes.

1. To remove the sway bar, remove the bolt securing the sway bar linkage to the sway bar arm at either end.

2. Remove the two bolts and lock nuts on each side that secure the sway bar arm to the sway bar. Remove the arm.

3. Pull the sway bar from its mounting area. Account for the two nylon bushings and spacers.

Inspecting Sway Bar & Sway Bar Arm

1. Inspect the sway bar for any signs of twisting, fatigue or wear.

2. Inspect the sway bar arms for cracks or worn mounting holes.
3. Inspect the bushings for wear on the inner and outer diameter.

4. Inspect the sway bar arm linkage for any signs of damaged ball joint ends or threads. Inspect the length to determine if the linkage is at the recommended length of 10.8-11.4 (4\(\frac{1}{4}\)-4\(\frac{1}{2}\) in.). To check the length, measure from the center to center of each ball joint. If adjustment is needed, loosen jam nuts and rotate adjustment stud. Before tightening jam nuts, apply LOCTITE LOCK N' SEAL to the threads.

Assembling Sway Bar

1. Place the sway bar into position and install a bushing and spacer on either end.

2. Slide the arm onto the bar until the bolt holes in the arm align with the notch in the shaft. Install the two bolts and lock nuts. Torque the nuts 1.8 kg-m (13 ft-lb).

3. Check and adjust linkage length (see Adjusting Sway Bar Linkage section).
Removing Console

1. Pull the recoil rope outward; then tie a slipknot in the recoil rope near the recoil case. Slowly allow the rope to retract to the knot.
2. Untie the knot in the end of the recoil rope; then remove handle from rope.
3. Remove the push nut securing recoil bushing; then remove bushing.
4. Remove the knurled nut securing the choke cable and the ignition nut and washer securing the ignition switch and disconnect the wires from the ignition switch; then remove the choke cable and ignition switch.
5. Disconnect the speedometer drive cable; then disconnect the wires from the speedometer, tachometer, and temperature gauge.
6. Remove the two machine screws securing the sides of the console; then remove the two screws and lock nuts securing the console to the front end.
7. On the Cougar and Cheetah F/C, remove the hoses from the primer; then plug to prevent drainage. Remove the nut and washer securing the primer; then remove primer.
8. Remove the fuel-tank cap and the spill seal.
9. Remove the console.
10. Remove the speedometer, tachometer, and temperature gauge. Account for the retainer plate and gasket.
11. Remove the two tapping screws securing console plate; then remove console plate.
12. Remove all decals and the oil-gauge backing.

Fig. 6:46

KEY
1. Console
2. Machine Screw
3. Temperature Gauge
4. Flat Washer
5. Tachometer
6. Rivet
7. Snap
8. Speedometer
9. Washer
10. Plate
11. Rivet
12. Bracket
13. Speed Nut
14. Machine Screw
15. Rubber Cushion Ring
16. Clamp
17. Rivet
18. Speedometer Cable
19. Nut w/Washer
20. Speedometer Bracket
21. Primer Line Tee
22. Temp. Gauge Bulb
23. Lamp Cord Ass'y.
24. Gauge Mtg. Bracket
25. Decal
26. Lock Nut
27. Toggle Switch
28. Lock Washer
29. Toggle Switch Nut
30. Retaining Bracket Ring
31. Fuel Primer
32. Lock Washer
33. Jam Nut
34. Primer Hose
35. Nut w/Washer
36. Rivet
Installing Console

1. Place the tachometer, speedometer, and temperature gauge into position and secure making sure the gasket and retainer plate are properly positioned.

2. On the Cougar and Cheetah F/C, place the primer into position and secure with the nut and washer. Connect the hoses.

3. Place console into position; then secure the console with two tapping screws and two screws and lock nuts.

4. Install the fuel-tank cap and spill seal.

5. Install the seat cushion.

6. Connect the wires to the console lights; then connect the speedometer drive cable.

7. Install recoil bushing and secure with the push nut.

8. Thread the recoil rope through the recoil bushing and recoil handle. Tie a knot in the end of the recoil rope. Pull the rope to remove the slipknot near the recoil case; then allow the rope to retract.

9. Slide the ignition switch and the choke cable through the console; secure the choke cable with a knurled nut and the ignition switch with the ignition nut and washer. Connect the wires to the ignition switch.

Removing & Installing Tunnel Components

NOTE: Not all of the following steps in the first four subsections will be applicable to the long track models.

REMOVING TOOLBOX AND TAILLIGHT

1. Remove the seat cushion.

2. Remove the toolbox pad.

3. Chisel or drill out the rivets securing the toolbox shroud to the tunnel; then remove the two metal screws and washers securing tailight assembly to the toolbox and remove toolbox.

4. Disconnect wiring harness from tailight; then remove the rivet securing the ground wire.

5. Remove the two metal screws securing tailight lens; then remove lens, gasket, and bulb.

Key

1. Toolbox
2. Rivet
3. Lock Washer
4. Rivet
5. Metal Screw
6. Washer
7. Toolbox Lens
8. Taillight Housing
9. Metal Screw
10. Bulb
11. Gasket
12. Taillight Lens
13. Lock Nut
14. Snowflap
15. Snowflap Cap
16. Bumper Stripe
17. Rear Bumper
18. Machine Screw
19. French Decal
20. Towing Caution Decal
21. Carriage Bolt
22. Rivet
23. Snap
24. Toolbox Pad
INSTALLING TOOLBOX AND TAILLIGHT
1. Install the bulb; then install the gasket and lens and secure with two metal screws.
2. Connect the wiring harness; then rivet the ground wire to the tunnel.
3. Rivet the toolbox shroud to the tunnel; then secure the taillight assembly to the toolbox with two metal screws.
4. Install the toolbox pad.
5. Install the seat cushion.

REMOVING REAR BUMPER, END PLATE, CAP, AND SNOWFLAP
1. Remove the seat cushion; then remove the reflectors and bumper tape. Remove the four machine screws and lock nuts securing rear bumper and bumper reinforcements to the tunnel. Remove the rear bumper and bumper reinforcements.
2. Remove the end caps.
3. Remove the three carriage bolts and lock nuts securing snowflap and cap; then remove cap and snowflap.
4. Chisel or drill out the rivets securing end plate to the tunnel; then remove plate.

INSTALLING REAR BUMPER, END PLATE, CAP, AND SNOWFLAP
1. Place end plate into position and secure with rivets.
2. Place snowflap and cap into position and secure with three carriage bolts and lock nuts.
3. Install the end caps.
4. Place the rear bumper and bumper reinforcements into position; then secure with the four machine screws and lock nuts. Install the seat cushion, bumper tape, and reflectors.

REMOVING BELLY PAN, HOOD, AND FRONT BUMPER
1. Remove the hood cable. Remove either the expansion chambers or pulse charger; then on the El Tigre 6000 and Cheetah L/C remove the machine screws, washers, and lock nuts securing the muffler to the belly pan.
2. Disconnect the headlight harness, remove the bolts and lock nuts securing the hood hinge to the belly pan hinge, and slide hood free of belly pan hinge. Account for two washers and bushings.
3. Remove the machine screws and lock nuts securing bumpers to the belly pan; then remove bumpers. Account for washers, end caps, and hood channels.
4. Position a support stand under the front end assembly taking all pressure off the skis.
5. Drain the coolant from the cooling system.
6. Remove the seat from the tunnel.
7. Remove the console. Remove the fuel line, vent line, and spring securing the rear of the fuel tank. Remove the tank.
8. Remove the sway bar arms and sway bar (see Removing Sway Bar section).
9. Remove the tie rods from the spindle arms.

10. Remove the bolts that secure the spindle and ski assemblies to the upper and lower A-frame arms. Remove the spindle assemblies from both sides.

11. Remove the three screws securing the nose cone; then remove the nose cone.

12. Remove the hardware securing the hinge support and front bumper to the belly pan; then remove hinge support, and bumper, and backing plates.

13. Carefully position the machine upside down. Place a small support stand under the side panels of the front-end assembly.

14. Using a number 12 or 13/64 in. drill bit, drill out all rivets securing the belly pan to the front end assembly.

15. Remove the bolts and lock nuts securing the upper A-frame arms to the front suspension shocks. Free the shocks from the upper arms.

16. Carefully lift the belly pan free of the front end assembly, guiding the tie-rods and upper A-frame arms through the rubber boots as the pan is being removed.

17. Carefully drill out the rivets that secure the rubber boots to the belly pan. Remove both the tie-rod and upper A-frame boots.

18. Clean the belly pan mounting area of drill chips and rivets. Wipe excess oil and dirt from the front suspension. Check to be sure no rivet shanks remain in any of the rivet holes. Use a 1/8 in. drift punch to remove any rivet shanks.

INSTALLING BELLY PAN, HOOD, AND FRONT BUMPER

NOTE: It is recommended that the machine remain mounted upside down for ease of installing the belly pan. Use the same procedure for installing the belly pan on all A.F.S. models. Because of the liquid cooled engine used in the El Tigre and Cheetah L/C models, some extra steps are required for these models.

1. Using rivets, secure rubber boots for tie-rods and upper A-frame arms to the belly pan.

2. Set the belly pan into position, make sure tie-rods and A-frame arms are properly located.
3. Align holes in belly pan with those found in the front end assembly. Install the front row of rivets just in front of the A-frame arms. Start in the center on the front row and work toward the outside.

4. After riveting the front row of rivets, install the rivets around each A-frame assembly and then work towards the back of the belly pan.

NOTE: After riveting is completed, apply silicone sealant to area where the belly pan meets the front end assembly around each set of A-frame arms.

5. Install the sway bar and arms. Torque the lock nuts securing the arms 1.8 kg-m (13 ft-lb).

6. Secure the sway bar linkages to the upper A-frame arms. Apply LOCTITE LOCK N' SEAL to the threads of studs that attach to A-frame arms. Tighten securely.

7. Secure the opposite end of each sway bar linkage to the sway bar arm with two bolts and lock nuts. Install the bolts from the outside, torque the lock nuts 3.2 kg-m (23 ft-lb).

8. Secure the spindle assemblies to the A-frame arms. Install bolts securing the spindles from the front and torque 3.2 kg-m (23 ft-lb).

9. Set the snowmobile upright.
10. Secure the tie-rods to the spindle arms from the bottom side. Torque to 3.2 kg-m (23 ft-lb).

11. Secure the hood hinge support plate to the belly pan.

12. Place the side bumpers in position and secure with machine screws and lock nuts. Remember that the rear two machine screws secure bumper and footrest. The next two must have the longer hood channel attached. The fifth and sixth have the short hood channel attached.

13. Place the front bumper into position and secure it to the hinge support plate with 10 bolts and lock nuts. All nuts are to be positioned on the inside of the belly pan.

14. Place the nose cone into position and secure it with three self-tapping screws from the inside of the belly pan (one screw on either outer corner along the bottom and one in the center). After all three screws have been started, tighten them evenly and draw the nose cone back against the belly pan.

NOTE: The center nose cone screw should be installed with a washer.

15. Thoroughly clean the side bumper surfaces; then place the reflectorized tape into position. Trim the ends of the tape to match contour of the bumper. Install new reflectors on either side near the ends of the side bumpers.

16. Place either the exhaust expansion chambers and muffler or pulse charger into position. Secure the muffler with three machine screws, flat washer, and lock nuts. Secure the expansion chambers or pulse charger with springs.

17. Place the hood into position and secure with bolts, bushings, washers, and lock nuts. Secure the hood cable and connect the headlight harness.

18. Adjust the hood for proper fit. Use the slotted holes in the front bumper to align the hood.

Removing Windshield and Headlight

1. Remove the machine screws securing windshield and remove the windshield. Account for expansion nuts and snap caps.

2. Disconnect the headlight harness.

3. Remove the rivets securing the headlight bracket to the hood.

4. Remove headlight assembly from the bracket by removing the four adjusting screws, adjusting nuts, and springs.

Installing Windshield and Headlight

1. Secure headlight assembly to the bezel with four adjusting screws, adjusting nuts, and springs.

2. Secure bezel to hood with two machine screws, washers, and lock nuts making sure the cable clamp is secured by the PTO-side screw.

3. Connect the headlight harness.

4. Install the expansion nuts in the holes of the hood. Place the windshield into position and secure with machine screws and snap caps.

NOTE: Tighten the screws starting from the center and working outward.

5. Adjust headlight aim.
Adjusting Headlight Aim

The headlight can be adjusted for vertical and horizontal aim of the HIGH/LOW beam. The geometric center of the HIGH beam light zone is to be used for vertical and horizontal aiming.

1. Position the snowmobile on a level floor so the headlight is approximately 8 m (25 ft) from an aiming surface (wall or similar surface).

2. Measure the distance from the floor to midpoint of the headlight.

3. Using the measurement obtained in step 2, make a horizontal mark on the aiming surface.

4. Make a vertical mark which intersects the horizontal mark on the aiming surface directly in front of the headlight.

5. Start the engine. Move the headlight dimmer switch to the HIGH beam position. DO NOT USE LOW BEAM.

6. Observe the headlight beam aim. Proper aim is when the most intense beam is centered on the vertical mark 5 cm (2 in.) below the horizontal mark on the aiming surface.

7. Adjust the four adjusting screws until the correct aim is obtained.
SECTION 7 — TRACK/SUSPENSION

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing Skid Frame (El Tigre, Pantera, & Cougar)</td>
<td>140</td>
</tr>
<tr>
<td>Disassembling Skid Frame (El Tigre, Pantera, & Cougar)</td>
<td>140-144</td>
</tr>
<tr>
<td>Cleaning Skid Frame</td>
<td>144</td>
</tr>
<tr>
<td>Inspecting Skid Frame</td>
<td>144</td>
</tr>
<tr>
<td>Assembling Skid Frame</td>
<td>144-149</td>
</tr>
<tr>
<td>Installing Skid Frame (El Tigre, Pantera, & Cougar)</td>
<td>149-150</td>
</tr>
<tr>
<td>Track Tension</td>
<td>150-151</td>
</tr>
<tr>
<td>Track Alignment</td>
<td>151</td>
</tr>
<tr>
<td>Adjusting Suspension</td>
<td>152-153</td>
</tr>
<tr>
<td>Adjusting Sway Bar Linkage</td>
<td>152</td>
</tr>
<tr>
<td>Adjusting Skid Frame Pre-Load (El Tigre, Pantera, & Cougar)</td>
<td>152-153</td>
</tr>
<tr>
<td>Adjusting Rear Shocks (El Tigre)</td>
<td>153</td>
</tr>
<tr>
<td>Removing Skid Frame (Cheetah)</td>
<td>153</td>
</tr>
<tr>
<td>Disassembling Skid Frame (Cheetah)</td>
<td>154-156</td>
</tr>
<tr>
<td>Cleaning Skid Frame (Cheetah)</td>
<td>157</td>
</tr>
<tr>
<td>Inspecting Skid Frame (Cheetah)</td>
<td>157</td>
</tr>
<tr>
<td>Assembling Skid Frame (Cheetah)</td>
<td>157-160</td>
</tr>
<tr>
<td>Installing Skid Frame (Cheetah)</td>
<td>160</td>
</tr>
<tr>
<td>Adjusting Suspension (Cheetah)</td>
<td>160-161</td>
</tr>
<tr>
<td>Front Spring</td>
<td>160-161</td>
</tr>
<tr>
<td>Rear Spring</td>
<td>161</td>
</tr>
</tbody>
</table>
Removing Skid Frame
(El Tigre- Pantera-Cougar)

1. Loosen the two track-tension adjustment bolts; then loosen the bolts securing the rear idler wheels.

2. Place a support stand under the rear bumper; then remove the bolts securing the rear shock absorbers and slide the shocks free of the suspension and chassis.

3. Remove the four bolts and lock washers securing the skid frame to the tunnel.

4. Tip the snowmobile onto one side using a piece of cardboard to protect against scratching; then remove skid frame.

Disassembling Skid Frame
(El Tigre-Pantera-Cougar)

1. Remove the bolts and lock nuts securing the end caps to the rails; then remove the end caps.

2. Remove the lock nuts and machine screws securing the wear strips to the rails.

3. Using a hammer and a piece of wood, drive the wear strips toward the rear of the rails to remove.
CAUTION

Be sure to use either a rubber hammer or a piece of wood to remove wear strips from rails. If a steel hammer or punch is used, the rails may be nicked and damaged.

4. Remove cap-lock screws and washers securing rear idler wheels to rear axle.

5. Slide the rear idler wheels and spacer washers off the rear axle.

6. Remove the rear axle from the axle housing. Account for washers, spacers, and center idler wheel.

7. Remove the four bolts and two lock nuts securing the axle housings; then slide the housings off the rails.

NOTE: Be sure to note the location of the rear rail support when removing axle housings. Support must be located between the front mounting holes.

8. Remove the two cap screws that secure the rear arm to the slide rails. Slide the rear arm off the back of the rails. Account for inner shaft and bushings.
9. Remove the single bolt that secures the rear idler arm to the rear arm. Account for inner axle and bushings.

Fig. 7-10

10. Remove the cap screws that secure the center idler wheels. Remove the wheels, washers, and axle.

Fig. 7-11

11. Remove the four bolts and lock nuts securing the rear crossbrace. Slide the crossbrace off the rear of the skid frame.

Fig. 7-12

12. Remove the long bolt which secures the center shock adjustment blocks. Account for the four adjustment blocks, two spacers, shock bushings, and adjustment fork.

Fig. 7-13

13. Remove the bolt and lock nut securing the front of the shock absorber to the shock pivot bracket. Account for the two shock bushings.

Fig. 7-14

14. Remove the bolt and lock nut securing the front-arm stop to the front crossbrace. Remove the bolt, washers, and lock nut securing the front-arm stop to the front arm; then remove the front-arm stop.

Fig. 7-15
15. Remove the two bolts and lock nuts securing the pivot link to the front arm.

16. Remove the two bolts and lock nuts securing the front arm to the two front arm brackets. Account for the four bushings.

17. Remove the cap screws securing the front idler wheels. Slide the idler wheels and washers off the axle.

18. Remove the bolt and lock nut securing the shock pivot to the two wheel mounting brackets. Account for axle and bushings.

19. Remove the six bolts and lock nuts securing the left and right wheel mounting brackets to the rails and slide the brackets back off the rails.

20. Remove the push nuts and pins securing the rubber shock pads and remove pads.
21. Remove the four bolts and lock nuts securing the front cross brace to the slide rails. Slide the cross brace off the front of the slide rails.

Fig. 7-22

Cleaning Skid Frame

1. Wash metallic components in parts-cleaning solvent and dry thoroughly.
2. Wash plastic components in soap and water only; then dry thoroughly.
3. Sand and apply touch-up paint to all rusted and chipped areas.

Inspecting Skid Frame

NOTE: Whenever a part is worn excessively, cracked, defective, or damaged in any way, replacement is necessary.
1. Inspect all threaded areas for stripped threads.
2. Inspect all bushings and corresponding pivot areas for cracks, defects, or wear.
3. Inspect idler wheels for wear and damage. Bearings must rotate freely.
4. Inspect axles for straightness.

Assembling Skid Frame

NOTE: Refer to Fig. 7-24 during assembly.
1. Slide the front cross brace into position (using the last two mounting holes) and secure with four bolts and lock nuts torqued 1.5 kg-m (11 ft-lb). When installing the cross brace, make sure the front arm stop bracket, which is welded off to one side of the cross brace is positioned toward the left side of the skid frame.

Fig. 7-23

2. Install the shock pads and secure with pins and push nuts. Locate push nuts to the inside of the rails.
<table>
<thead>
<tr>
<th>Fig. 7-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEY</td>
</tr>
<tr>
<td>1. Rail, Formed</td>
</tr>
<tr>
<td>2. Screw, Machine</td>
</tr>
<tr>
<td>3. Strip, Wear</td>
</tr>
<tr>
<td>4. Nut, Lock</td>
</tr>
<tr>
<td>5. Nut, Push</td>
</tr>
<tr>
<td>6. Pad, Shock</td>
</tr>
<tr>
<td>7. Nut, Lock</td>
</tr>
<tr>
<td>8. Rivet, Solid</td>
</tr>
<tr>
<td>9. Screw, Cap</td>
</tr>
<tr>
<td>10. Bracket, Front Arm Mounting</td>
</tr>
<tr>
<td>11. Crossbrace, Front</td>
</tr>
<tr>
<td>12. Bracket, Wheel Mounting</td>
</tr>
<tr>
<td>13. Axle, Front Aux., Wheel</td>
</tr>
<tr>
<td>14. Crossbrace, Rear</td>
</tr>
<tr>
<td>15. Axle, Rear Aux., Wheel</td>
</tr>
<tr>
<td>16. Washer</td>
</tr>
<tr>
<td>17. Wheel, Idler</td>
</tr>
<tr>
<td>18. Insert, Wheel</td>
</tr>
<tr>
<td>19. Insert, Wheel</td>
</tr>
<tr>
<td>20. Washer</td>
</tr>
<tr>
<td>21. Screw, Cap</td>
</tr>
<tr>
<td>22. Wheel, Idler</td>
</tr>
<tr>
<td>23. Insert, Wheel</td>
</tr>
<tr>
<td>24. Insert, Wheel</td>
</tr>
<tr>
<td>25. Axle, Rear</td>
</tr>
<tr>
<td>26. Washer, Rectangular</td>
</tr>
<tr>
<td>27. Housing</td>
</tr>
<tr>
<td>28. Housing</td>
</tr>
<tr>
<td>29. Screw, Cap</td>
</tr>
<tr>
<td>30. Nut, Hex</td>
</tr>
<tr>
<td>31. Washer</td>
</tr>
<tr>
<td>32. Plate/Nut</td>
</tr>
<tr>
<td>33. Shock, Front Arm</td>
</tr>
<tr>
<td>34. Screw, Cap</td>
</tr>
<tr>
<td>35. Screw, Cap</td>
</tr>
<tr>
<td>36. Nut, Lock</td>
</tr>
<tr>
<td>37. Screw, Cap</td>
</tr>
<tr>
<td>38. Washer, Shock</td>
</tr>
<tr>
<td>39. Spring, Front Arm</td>
</tr>
<tr>
<td>40. Retainer, Spring</td>
</tr>
<tr>
<td>41. Bracket, Shock Pivot</td>
</tr>
<tr>
<td>42. Bushing</td>
</tr>
<tr>
<td>43. Tube, Axle</td>
</tr>
<tr>
<td>44. Link, Pivot</td>
</tr>
<tr>
<td>45. Front Arm</td>
</tr>
<tr>
<td>46. Spacer</td>
</tr>
<tr>
<td>47. Axle, Inner</td>
</tr>
<tr>
<td>48. Bearing, Axle</td>
</tr>
<tr>
<td>49. Washer, Lock</td>
</tr>
<tr>
<td>50. Screw, Cap</td>
</tr>
<tr>
<td>51. Stop, Arm</td>
</tr>
<tr>
<td>52. Screw, Cap</td>
</tr>
<tr>
<td>53. Washer</td>
</tr>
<tr>
<td>54. Screw, Cap</td>
</tr>
<tr>
<td>55. Rear Arm</td>
</tr>
<tr>
<td>56. Axle, Rear Arm</td>
</tr>
<tr>
<td>57. Arm, Rear Idler</td>
</tr>
<tr>
<td>58. Axle, Inner Idler Arm</td>
</tr>
<tr>
<td>59. Axle</td>
</tr>
<tr>
<td>60. Wheel, Idler</td>
</tr>
<tr>
<td>61. Axle</td>
</tr>
<tr>
<td>62. Shock, Rear Arm</td>
</tr>
<tr>
<td>63. Cover, Suspension Spring</td>
</tr>
<tr>
<td>64. Washer</td>
</tr>
<tr>
<td>65. Screw, Cap</td>
</tr>
<tr>
<td>66. Zerk, Grease</td>
</tr>
<tr>
<td>67. Spring, Rear Shock</td>
</tr>
<tr>
<td>68. Spacer, Rear Axle</td>
</tr>
<tr>
<td>69. Tube, Rear Shock</td>
</tr>
<tr>
<td>70. Rivet</td>
</tr>
<tr>
<td>71. Track Assembly</td>
</tr>
<tr>
<td>72. Clip, Guide</td>
</tr>
<tr>
<td>73. Screw, Cap</td>
</tr>
<tr>
<td>74. Screw, Cap</td>
</tr>
<tr>
<td>75. Support, Rail</td>
</tr>
<tr>
<td>76. Screw, Cap Lock</td>
</tr>
<tr>
<td>77. Bolt, Adjuster</td>
</tr>
<tr>
<td>78. Spacer, Adjuster</td>
</tr>
<tr>
<td>79. Block, Clamping</td>
</tr>
<tr>
<td>80. Screw, Cap</td>
</tr>
<tr>
<td>81. Wheel, Center Idler</td>
</tr>
<tr>
<td>82. Washer, Lock</td>
</tr>
<tr>
<td>83. Washer, Rectangular</td>
</tr>
<tr>
<td>84. End Caps</td>
</tr>
<tr>
<td>85. Washer, Flat</td>
</tr>
<tr>
<td>86. Screw, Cap</td>
</tr>
</tbody>
</table>
3. Install the left and right wheel brackets. Secure with six bolts and lock nuts torqued 1.5 kg-m (11 ft-lb). Position all lock nuts to the inside of the rails.

4. Coat the shock pivot axle with low-temperature grease and slide into shock pivot bracket. Position a bushing at either end of the bracket axle bore and place assembly between wheel brackets. Secure shock pivot bracket assembly with bolt and lock nut torqued 3.2 kg-m (23 ft-lb).

5. Slide washers and front idler wheels into position on front idler wheel axles. Secure wheels to axle with large washer and cap screw torqued 1.5 kg-m (11 ft-lb).

6. Position the two front arm brackets on the slide rails and secure with bolts and lock nuts torqued 1.5 kg-m (11 ft-lb). Bolts should be installed from the outside.

7. Place front arm bushings into arm eyelets and position the arm into the mounting brackets. Secure with two bolts and lock nuts torqued 3.2 kg-m (23 ft-lb).

8. Install pivot link. Position spacers into both link mounting holes and secure link to front arm and shock pivot bracket using two bolts and lock nuts. Torque to 3.2 kg-m (23 ft-lb). It is very important that the bolts be installed from the left. The nuts must be located on the right side of the shock pivot bracket.

--- CAUTION ---

If the link mounting bolts are not installed as pointed out in step 8, the front arm stop will be damaged.

9. Place the front-arm stop into position around front arm and secure with a bolt, two washers, and lock nut torqued to 1.1 kg-m (8 ft-lb). Position arm as shown in Fig. 7-29.
10. Secure the front-arm stop to the front crossbrace with a bolt and lock nut torqued to 1.5 kg-m (11 ft-lb).

11. Place spacer into shock absorber eyelet and secure to bottom of shock pivot bracket. Secure with bolt and lock nut torqued 3.2 kg-m (23 ft-lb).

12. Place spacer into rear shock absorber eyelet. Attach shock absorber preload adjustment fork and securing blocks to rear of shock absorber and slide rails. Secure with long bolt and lock nut. Place a spacer on either side of the fork.

13. Position center crossbrace on slide rails. Guide threaded shock absorber adjustment stud through guide tube of crossbrace. Make sure that a nut and washer are located on the adjustment stud before it enters the guide tube. Align the crossbrace mounting holes with those in the slide rails and secure with four bolts and lock nuts. Torque nuts to 1.5 kg-m (11 ft-lb).

14. Adjust preload on skid frame forward shock absorber by rotating the adjustment nut clockwise or counterclockwise, until 18-25 mm (7/8" to 1") of threads is exposed behind the rear jam nut. Lock the adjustment with the jam nut behind the guide tube.
15. Lock adjustment blocks securely in position. Torque adjustment block bolt to 3.2 kg-m (23 ft-lb).

16. Slide center idler wheel axle into position. Position washers and idler wheels on axle. Secure wheels to axle using larger washer and cap screws. Torque cap screws to 1.5 kg-m (11 ft-lb).

17. Assemble rear arm by placing its axle and bushings into the lower mounting crossbrace. Position arm between slide rails and secure with two bolts and lock washers. Torque bolts to 3.2 kg-m (23 ft-lb).

18. Place axle and bushings into the upper idler arm mounting tube and secure the upper arm to the lower arm with a bolt and lock nut torqued to 3.2 kg-m (23 ft-lb). Assemble upper idler shaft and wheels to tube along with outer spacers and washers.

19. Secure the rear axle housings to the rails using four bolts and two lock nuts. Align the rear rail support with the forward mounting bolts. Place lock nuts on the bolts. Torque bolts and lock nuts to 1.5 kg-m (11 ft-lb). Be sure that the wide portion of the axle bushings are positioned “out” on each rail.
20. Slide the rear axle halfway into position. Install center spacer, center idler wheel, and remaining spacer on axle. Push axle through remaining axle housing.

21. Slide outer idler wheels and washer into position. In order on each axle end, install a washer, and cap lock screw. Torque cap screws to 1.5 kg·m (11 ft·lb).

22. Apply grease to the inside of the wear strip mounting channel and the rails. Using a rubber or plastic hammer, drive the wear strips into position from the rear of the rails. Secure strips with two machine screws and lock nuts.

23. Place an end cap into position on the end of each slide rail; then secure with a bolt and lock nut. Torque to 1.5 kg·m (11 ft·lb).

Installing Skid Frame

(El Tigre-Pantera-Cougar)

1. Tip snowmobile onto one side using a piece of cardboard to protect against scratching.

2. Pull track away from the tunnel and install skid frame. Slide inner axles through front and rear arms of skid frame.

 NOTE: Track adjustment bolts must be in loosest position.

3. Move front of skid frame into position with front mounting hole in the tunnel. Slide lock washer onto bolt; then secure front arm to tunnel. Thread bolt in only halfway. **DO NOT TIGHTEN AT THIS TIME.**

4. Slide the skid frame and track into the tunnel.

5. Tip the snowmobile onto the opposite side and secure front arm to tunnel using step 3.

6. Move rear arm into position with rear mounting holes in tunnel. Slide lock washer onto bolt; then secure rear arm to tunnel. Thread in only halfway. **DO NOT TIGHTEN AT THIS TIME.**

 NOTE: Rear arm of skid frame may not align with mounting holes in tunnel. To obtain proper alignment of rear arm, drive the arm in the proper direction until alignment is obtained.

7. Again tip the snowmobile onto the opposite side and fasten rear arm to tunnel using step 6.
8. Tighten mounting bolts to 3.2 kg-m (23 ft-lb).

Fig. 7-43

9. Tighten the two track-tension adjustment bolts. Tighten evenly until track deflection is within specifications; then lock jam nuts to secure adjustment.

NOTE: The bolts securing the rear idler wheels must be loosened when adjusting track tension. Be sure to tighten after making the adjustment.

<table>
<thead>
<tr>
<th>Track Tension</th>
<th>mm</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>New (100 miles or less)</td>
<td>13-19</td>
<td>½-¾</td>
</tr>
<tr>
<td>Old (100 miles or more)</td>
<td>25-32</td>
<td>1-1¼</td>
</tr>
</tbody>
</table>

10. Set rear bumper up on a support stand, taking all pressure off the skid frame. Install the rear shock absorbers and secure with washers and cap screws. Torque cap screws to 1.1 kg-m (8 ft-lb).

11. Install rear shock absorber covers.

12. Check track tension and alignment; adjust if necessary.

Track Tension

WARNING

Shut engine off and make sure ignition switch key is in the OFF position.

1. Raise the rear of the snowmobile off the floor.

2. Using moderate pressure (9 kg or 20 lb), press track down at mid-span and measure distance between bottom of the wear-strip and inside surface of the track. Track deflection must be within specifications.

<table>
<thead>
<tr>
<th>Track Tension</th>
<th>mm</th>
<th>in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>New (100 miles or less)</td>
<td>13-19</td>
<td>½-¾</td>
</tr>
<tr>
<td>Old (100 miles or more)</td>
<td>25-32</td>
<td>1-1¼</td>
</tr>
</tbody>
</table>

3. If measurement is not as specified, loosen the jam nuts of the adjustment bolts; then loosen the bolts securing the rear idler wheels.
1. Using a shielded safety stand, raise the rear of the snowmobile off the floor making sure the track is free to rotate.

![WARNING]

The tips of the skis must be positioned against a wall or similar object for safety.

2. Start the engine and accelerate slightly. Use only enough throttle to turn the track several revolutions. SHUT ENGINE OFF.

NOTE: Allow the track to coast to a stop. DO NOT apply the brake because it could produce inaccurate alignment conditions.

3. When the track stops rotating, check the relationship of the rear idler wheels and the track inner drive lugs. If the distance from the idler wheels to the inner drive lugs is the same on both sides, no adjustment is necessary.

4. If the distance from the idler wheels to the inner drive lugs is not the same on both sides, proceed to step 5.

5. On the side of the track which has the inner drive lugs closer to the rear idler wheel, loosen the adjustment bolt jam nut and both rear idler wheel bolts; then rotate the adjustment bolt clockwise 1-1/2 turns.

6. Check track alignment and make necessary adjustments until proper alignment is obtained.

NOTE: Make sure correct track tension is maintained after adjusting track alignment.

7. After proper track alignment is obtained, lock adjustment bolt jam nut against the axle housing and tighten the rear idler wheel bolts.

8. Field test the track under actual conditions.

9. After the field test, check track alignment and track tension; adjust if necessary.

Track Alignment

Proper track alignment is when the rear idler wheels are equidistant from the inner drive lugs on the inside surface of the track.
Adjusting Suspension

The suspension has been designed to provide the operator with the best possible handling and ride with the least amount of adjustment and maintenance.

Under most conditions, little change in suspension adjustment will be required from the initial set-up at the factory. If, however, the customer feels a suspension change is necessary to fit his or her driving style, use the following instructions.

ADJUSTING SWAY BAR LINKAGE

The sway bar linkage adjustment is used to level the front end assembly. It has been preset during manufacturing and shouldn't need any adjustment unless disassembly should become necessary. Use the following procedure for reassembly and adjusting of the sway bar linkage.

1. Set a support stand under the front belly pan to take pressure off the skis.

2. If the sway bar linkage has been removed from the snowmobile, measure its length from the center of the upper ball joint to the center of the lower ball joint hole. It must measure between 10.8 and 11.4 cm (4 ¾ and 4 ½ in.). To adjust, loosen the jam nuts on the adjustment stud and rotate the adjustment stud until the desired center-to-center distance is obtained. Adjust the linkage for the other side using the same procedure.

3. With both linkages preadjusted, install them on the snowmobile. Apply LOCTITE LOCK N' SEAL to the upper ball joint stud threads and secure to upper arm.

4. Using the bolt and nut, secure the lower portion of the linkage to the sway bar arm. Tighten to 2.9-3.5 kg-m (21-26 ft-lb).

5. Remove support stand from front end assembly and place the snowmobile on a level floor.

6. Position a level or angle finder on the engine cylinder head to check the levelness of the snowmobile.

7. If the snowmobile isn’t level, make the final adjustment to either of the linkages to level the snowmobile. Be sure to lock all linkage jam nuts after completing the adjustment.

ADJUSTING SKID FRAME PRE-LOAD
(El Tigre, Pantera, and Cougar)

The pre-load adjustment has been set at the factory for best handling and ride under normal trail riding conditions. Arctco recommends that 18-25 mm (¾-1 in.) of thread be exposed behind the rear jam nut as an initial setting. If hard or fast riding is done over very rough trails, more pre-load may be desired. To increase pre-load follow these steps:

1. Loosen shock mounting bolt and nut.

2. Loosen the jam nut; then rotate adjusting nut clockwise to increase pre-load and counterclockwise to decrease pre-load.

■ NOTE: The pre-load must not be set so that less than 1 to 2 threads are exposed behind the rear jam nut.

• CAUTION •

If pre-load is excessive, damage to the shock may occur. If pre-load is insufficient, damage to the tunnel may occur.

3. After pre-load is set, tighten the bolt and nut to 3.4 kg-m (23 ft-lb).

4. Have the owner test drive to ensure the proper adjustment.
If more ski pressure is desired, once you have reached the maximum pre-load, use the following procedure:

1. Loosen the shock mounting bolt and return the shock pre-load adjustment back to the original recommended setting.

2. Remove the bolts securing the front cross-brace to the rails.

NOTE: The front crossbrace is initially assembled at the factory in the last adjustment holes of the skid frame (the best position for most trail riding conditions).

If you want to adjust the rear shocks:

3. Move the front crossbrace forward one position on the rails; then install the bolts. Torque to 3.2 kg-m (23 ft-lb).

4. Secure the pre-load adjustment (shock mounting bolt and jam nut). Torque to 3.2 kg-m (23 ft-lb).

5. Test drive the snowmobile and fine tune the suspension using the pre-load adjustment.

Adjusting Rear Shocks

(El Tigre)

The rear shocks are adjustable on the El Tigre model. The shocks can be adjusted in five steps adding pre-load to the springs for different-weight riders. The cam adjusters on the shocks should be adjusted so the rider cannot bottom out the suspension. To check for proper adjustment, have the customer stand on the rear of the footrest area and bounce hard several times. Observe suspension travel; if the suspension reaches the limit of its travel, adjust the cam adjuster on each shock to the next step and repeat procedure. Suspension is adjusted correctly when only ½ to ¾ of the total travel is used.

Removing Skid Frame

(Cheetah)

1. Loosen the two track-tension adjustment bolts.

2. Remove the four bolts and lock washers securing the skid frame to the tunnel.

3. Tip the snowmobile onto one side. Use a piece of cardboard to protect against scratching.

4. Remove the skid frame.

NOTE: When removing the Cheetah skid frame, it isn't necessary to unlock or disconnect the rear suspension springs.
1. Remove the bolts and lock nuts securing the end caps to the rails; then remove the end caps.

2. Remove the lock nuts and machine screws securing the wear strips to the rails.

3. Using a piece of wood and a hammer, drive the wear strips off the slide rails.

4. Remove the cap-lock bolts and large washers securing rear idler wheels to rear axle.

5. Slide the rear idler wheels and spacer washers off the rear axle.

6. Remove the axle from the axle housing.

7. Remove the four bolts and lock nuts securing the axle housings; then slide the housings off the rails.

CAUTION

Be sure to use a piece of wood or a rubber hammer to remove the wear strips from the rails. If a steel hammer is used, the bottom of the rails may be nicked and damaged.
NOTE: Be sure to note the location of the rear rail support when removing axle housings. Support must be located between front mounting holes.

8. Remove the two cap screws securing the forward spring support brackets and rollers to the idler wheels. Grasp the spring and retaining bracket and slide the bracket off the idler wheel shaft.

Fig. 7-57

NOTE: By following step 8, the spring tension can easily be removed from the rear suspension spring. Spring tension may also be reduced by removing the spring from the rear adjustment block using special tool (p/n 0144-311).

9. Remove the two cap screws securing the shock absorber to the rear arm. Remove the shock absorber.

Fig. 7-58

11. Remove the single bolt securing the two rear idler arm pieces together; then separate pieces. Account for inner axles.

12. Remove the cap screws securing the rear arm stops to the rails and remove stops.

13. Remove the four bolts and lock nuts securing the rear idler wheels to the rails. Remove idler wheel support brackets, shaft, wheels, and spacers from between the skid frame rails.

Fig. 7-59

14. Remove the four bolts and nuts securing the center idler wheel crossbrace to the rails. Slide the crossbrace off the rear of the rails.

Fig. 7-60

10. Remove the bolt securing the rear arm to the slide rails. Slide the rear arm back off the rails.
15. Remove the nuts securing the front suspension spring eyebolts; then remove the eyebolts. Slide the front springs off the front arm.

16. Remove the bolt and lock nut securing the front-arm stop to the front crossbrace. Remove the bolt, washers, and lock nut securing the front-arm stop to the front arm; then remove the front-arm stop.

17. Remove the bolt and lock nut securing the front arm to the front arm mounting brackets. Remove the arm and account for axles.

18. Remove the four bolts and lock nuts securing the front-arm brackets to the slide rails; then remove brackets.

19. Remove the four bolts and nuts that secure the front idler wheel brackets. Remove brackets, wheels, spacers, and axles.

20. Remove the four bolts and lock nuts securing the front crossbrace to the slide rails. Slide the crossbrace off the front of the rails.

21. Remove the push nuts and pins securing the front shock pads to the slide rails; then remove the pads.
Cleaning Skid Frame (Cheetah)

1. Wash all metallic components in parts-cleaning solvent and dry with compressed air.
2. Wash all plastic parts in detergent soap and hot water; then dry thoroughly.
3. Sand and apply paint to all rusted or chipped areas.

Inspecting Skid Frame (Cheetah)

- NOTE: It is very important that a close inspection is made on all parts. Simple cleaning isn’t enough as this area involves safety of the operator. All welded areas should be closely inspected for any signs of cracking or fatigue. All mounting holes should be checked for wear. All lock nuts should be replaced and torqued to specifications. Inspect all bushings, axles, and mounting brackets for wear and cracks. If a part appears questionable, replace the part.

1. Inspect all mounting bolts for any signs of thread damage, bending, stretch, and wear. If any of these conditions are found, replace the bolt.
2. Inspect all axles for signs of cracking or wear. Check each axle for tightness in its bushings.
3. Inspect front and rear arms in welded areas and entire length for any signs of cracks. Replace arms if any cracks are found.
4. Inspect all idler wheel bearings. Turn each bearing by hand and check for smoothness. If a bearing feels rough, replace the wheel and bearing as a set.
5. Inspect all idler wheel mounting axles for straightness.
6. Inspect all springs for abnormal bends or cracks.
7. Inspect all mounting brackets for bending, wear, and cracks.
8. Inspect the skid-frame rails for unusual bends.

Assembling Skid Frame (Cheetah)

1. Slide the front shock pads into position. Install pins and secure with push nuts.
2. Slide the front crossbrace into the rail from the front and secure with four bolts and new lock nuts. Torque to 2.4 kg-m (17 ft-lb).

3. Install the front idler wheels, spacer, washers, axles, and mounting brackets. Secure the mounting brackets to the rails with four bolts and lock nuts torqued to 2.4 kg-m (17 ft-lb).
4. Install the front arm mounting brackets. Secure with four bolts and lock nuts torqued to 2.4 kg-m (17 ft-lb).
5. Position axles and spacer into the lower front arm mounting tube and place between mounting brackets. Secure the front arm to the mounting brackets with a long bolt and new lock nut torqued to 4.2 kg-m (30 ft-lb).
6. Secure the front-arm stop to the front arm with bolt, two washers, and lock nut. Nut should be positioned on bottom side of front-arm stop. Torque the bolt to 1.1 kg-m (8 ft-lb).
KEY
1. Bracket, Front Arm
2. Nut, Lock
3. Screw, Cap
4. Nut, Lock
5. Arm, Rear
6. Axle
7. Spring, Rear
8. Wheel, Idler
9. Sleeve, Spring
10. Axle, Idler Arm
11. Screw, Cap
12. Arm, Idler
13. Screw, Cap
14. Screw, Cap
15. Axle, Serrated
16. Bushing
17. Washer, Lock
18. Screw, Cap
19. Axle, Inner
20. Washer
21. Block, Adjustment
22. Block, Adjustment
23. Washer, Flat
24. Screw, Cap
25. Shock Absorber
26. Axle, Front Arm
27. Screw, Cap
28. Eye bolt
29. Spring, Front
30. Arm, Front
31. Bearing
32. Fitting, Grease
33. Strap, Limiter
34. Nut, Lock

KEY
1. Rail, Formed
2. Screw, Machine
3. Strip, Wear
4. Nut, Lock
5. Nut, Push
6. Pad, Shock
7. Nut, Lock
8. Rivet, Solid
9. Screw, Cap
10. Stop, Arm
11. Axle, Inner
12. Washer
13. Screw, Cap
14. Nut, Hex
15. Washer, Lock
16. Cross Series, Front
17. Roller, Suspension Spring
18. Cross Series, Shock Mount
19. Screw, Cap-Lock
20. Washer
21. Wheel, Idler
22. Insert, Wheel
23. Insert, Wheel
24. Arm, Rear Axle
25. Axle, Rear
26. Support, Auxl. Wheel
27. Plate/Nut
28. Spacer, Rectangular
29. Spacer
30. Axle, Idler Wheel
31. Washer
32. Wheel, Idler
33. Insert, Wheel
34. Insert, Wheel
35. Screw, Cap
36. Tube, Spring Roller
37. Screw, Cap
38. Strap, Spring Retainer
39. Pin, Spring
40. Track Assembly
41. Clip, Guide
42. Wheel, Idler
43. Housing, Rear Axle
44. Washer
45. Support, Rear Rail
46. Nose Piece, Rail
47. Screw, Cap
48. Washer, Flat
49. Screw, Cap
50. Bracket Auxl. Wheel
51. Axle, Inner
7. Secure the front arm stop to the crossbrace with a bolt and lock nut torqued to 1.1 kg-m (8 ft-lb). Check to make sure the stop is free to pivot.

8. Place front springs into position on front arm and on front crossbrace rollers. Attach eyebolts to springs and secure eyebolts to front arm with lock nuts. Tighten so 12 mm (½ in.) of thread shows behind the nut.

9. Slide the center crossbrace onto the rear of the rails and into position. Secure with four bolts and lock nuts torqued to 2.4 kg-m (17 ft-lb). DO NOT INSTALL THE IDLER WHEELS AT THIS TIME.

10. Position the center idler wheel mounting brackets into position on the slide rails and secure with four bolts and lock nuts torqued to 2.4 kg-m (17 ft-lb).

11. Lubricate the center idler wheel axle with a good low-temperature grease and start into either of the mounting brackets. Arrange a washer, idler wheel, washer, spacer, washer, idler wheel, and washer onto the axle and slide axle through all components and remaining mounting bracket. Secure with two large flat washers and cap screws torqued to 2.4 kg-m (17 ft-lb).

12. Place the rear shock pads into position and secure to the slide rails.

13. Assemble the axles and spacer in the upper rear arm and slide into position on lower arm. Secure upper arm to lower arm with a single long bolt and lock nut torqued to 4.2 kg-m (30 ft-lb).

14. Slide the rear arm assembly into position from the rear of the rails. Secure to the rails with a single long bolt and lock nut torqued to 4.2 kg-m (30 ft-lb).

15. Place the rear arm limiter strap around the bottom and upper arm. Secure strap with a flat washer on each side of the strap and a bolt and lock nut. Torque the lock nut to 1.1 kg-m (8 ft-lb).

16. Place the rear shock into position and secure to upper rear arm and center crossbrace with two bolts and lock nuts torqued to 4.2 kg-m (30 ft-lb).

17. Place the rear suspension springs onto the rear arm. Press the rear idler wheel into position on the rear arm.

18. Place the rear spring onto the adjustment block. Grasp the long portion of the spring and place it along with its roller and retainer on the center idler wheel shaft. Secure idler wheels and spring retainer to axle with cap screws torqued to 2.4 kg-m (17 ft-lb).

19. Slide the rear axle housings onto the slide rails and secure with four cap screws and lock nuts torqued to 2.4 kg-m (17 ft-lb). Be sure the wide portion of the axle housings are positioned out on each rail.
20. Slide the rear axle through the housing; then position a spacer washer on either end of the axle and slide the rear idler wheels into position. Secure the idler wheels to the rear axle with two bolts and cap screws torqued to 2.4 kg-m (17 ft-lb).

21. Apply grease to the rails and wear strips; then using a hammer and a block of wood, drive the wear strips into position from the rear of the rails. Secure wear strips with two machine screws and lock nuts.

22. Place an end cap into position on the end of each slide rail; then secure with a bolt and lock nut. Torque to 1.5 kg-m (11 ft-lb).

23. Using a low-temperature grease, lubricate all grease fittings.

Install Skid Frame (Cheetah)

1. Tip snowmobile onto one side using a piece of cardboard to protect against scratching.

2. Pull track away from the tunnel at a 45 degree angle and install skid frame. Slide inner axles through front and rear arms of skid frame.

3. Move the front arm into position with front mounting hole in tunnel. Slide lock washer onto bolt; then secure front arm to tunnel. Thread bolt in only halfway. DO NOT TIGHTEN AT THIS TIME.

4. Slide the skid frame and track into the tunnel.

5. Tip the snowmobile onto the opposite side and secure front arm to tunnel using step 3.

6. Swing the rear of the frame into position and secure rear arm to tunnel with remaining two bolts; then set the snowmobile upright and torque all four mounting bolts to 3.2 kg-m (23 ft-lb).

NOTE: If the rear arm doesn't align with its mounting holes, it can be pryed forward using a long bar. Place the bar against upper track wear clip and arm.

7. Check and adjust track alignment and tension.

Adjusting Suspension (Cheetah)

The suspension should be adjusted for the operator and normal average load. The rear springs should be adjusted for the weight and riding preference of the operator. The optimum adjustment on the rear springs prevents the suspension from “bottoming out” on all but the most severe bumps. The springs should not be adjusted so stiffly that the suspension will not work properly under normal conditions. A good test of a properly adjusted suspension is the operator should just be able to “bottom” the suspension when jumping up and down on the rearmost part of the running board.

The front spring adjustment primarily influences the way the snowmobile performs in snow and the effort required to steer the snowmobile. The optimum setting for the front spring (when spring tension is sufficiently stiff to prevent the suspension from collapsing in deep snow but not so stiff that steering becomes ineffective) is when 12 mm (½ in.) of thread is apparent behind each lock nut.

FRONT SPRING

To adjust spring tension, tighten or loosen the lock nut on the eyebolt connected to the spring until desired tension is attained.

Perform this procedure on both sides to maintain equal adjustment on both springs.

NOTE: When the lock nut is tightened spring tension is increased; when the lock nut is loosened, spring tension is decreased.
REAR SPRING

Rear spring tension adjustment is accomplished by rotating the adjustment cam. Each cam is numbered 1-4 for easy identification with position 4 providing the stiffest ride and position 1 for the light driver or slow speed trail driving. Positions 2 and 3 are for the average operator under normal conditions with position 3 providing the stiffer ride.

To rotate the cam, insert the handle from the spark-plug wrench into one of the holes in the adjustment cam. Rotate the handle until the cam is in the desired position. Make the adjustment on the other cam making sure both cams are adjusted equally.

![Diagram of Rear Spring Adjustments]

CAUTION

DO NOT rotate the adjustment cam directly from position 1 to position 4. Always adjust in numerical sequence. Cam failure or damage may result if the cam is rotated directly from position 1 to position 4.
SECTION 8 — RECOIL STARTER

TABLE OF CONTENTS

Removing .. 164
Disassembling 164-165
Inspecting .. 165
Assembling .. 165-166
Installing ... 166

163
Removing

1. Tie a slipknot in the recoil rope below the console and allow the rope to slowly retract against the recoil case.
2. Remove the knot at the handle and remove the handle; then thread rope through the recoil bushing in the console.
3. Remove the four bolts and lock washers securing recoil assembly to the magneto-case cover.

Disassembling

1. Clamp the recoil in a vise.
2. Rotate the recoil roller counterclockwise until the notch of the roller is near the recoil rope guide in the case. Guide the rope into the notch and slowly allow the roller to retract until all recoil spring tension is released.
3. While exerting downward pressure on the drive plate, remove the nut and washer.
4. Slowly release the drive plate and lift the drive plate w/spring clip free of the recoil roller.
5. Remove the spring clip from the drive plate.
6. Remove the pawl; then remove the pawl spring.
7. Carefully lift the recoil free of case making sure the recoil spring does not accidentally disengage from the recoil case.
8. Remove the recoil spring from the recoil case by lifting the spring end up and out. Hold remainder of recoil spring with thumbs and alternately release each thumb to allow the recoil spring to gradually release from the recoil case.

NOTE: Do not remove the recoil spring unless replacement is necessary. It should be visually inspected in place to save time.

9. Unwind the rope from the recoil roller, untie the knot, and remove the rope.

Inspecting

NOTE: Whenever a part is worn excessively, cracked, defective, or damaged in any way, replacement is necessary.

1. Inspect all springs, washers, and pawl for wear or damage.
 - Inspect the recoil roller and case for cracks or damage.

2. Inspect the center hub for wear, cracks, or damage.

3. Inspect the recoil rope for breaks or fraying.

4. Inspect the recoil spring for cracks, crystalization, or abnormal bends.

5. Inspect the handle for damage, cracks or deterioration.

Assembling

Fig. 8-5

1. Hook the end of the recoil spring around the mounting lug in the recoil case.

2. Insert the recoil spring into the recoil case winding it in a counterclockwise direction until the complete recoil spring is installed.

NOTE: Recoil spring must seat evenly in the recoil case.

3. Insert the rope through the hole in the recoil roller and tie a knot in the end; then wrap rope counterclockwise around roller leaving about ½ m (20 in.) of rope free of roller.

4. Apply a low-temperature grease to the spring and hub.

5. Align the hook in the end of the recoil spring with the notch in the recoil roller.
6. Carefully slide the recoil over hub and engage the spring with the roller.

7. Install the pawl spring making sure the end is properly installed in the hole in the recoil roller; then install the pawl making sure the pawl spring is properly preloaded.

8. Slide end of recoil rope through rope guide of the case; then tie a slipknot in the recoil rope.

9. Place the spring clip into position on the drive plate making sure the head of the clip is opposite the flat of the inner hole. Apply a low-temperature grease to the drive plate.

10. Place the drive plate into position making sure the flat of the inner hole is correctly positioned in the hub; then secure drive plate with washer and nut. Tighten to 1.0 kg-m (7 ft-lb).

 NOTE: Apply LOCTITE LOCK & SEAL (red) to the threads before installing.

11. With about ½ m (20 in.) of rope exposed, hook the rope in the notch of the recoil roller.

12. Rotate the recoil roller four or five turns counterclockwise; then release the recoil rope from the notch and allow the rope to retract.

13. Pull recoil rope out two or three times to check for correct tension.

 NOTE: Increasing the rotations in step 12 will increase spring tension; decreasing the rotations will decrease spring tension.

Installing

1. Place recoil assembly into position against the magneto case.

2. Secure recoil with four bolts and lock washers. Tighten to 0.7 kg-m (5 ft-lb).

 NOTE: Before tightening the bolts, slowly pull recoil rope until the pawl engages; then tighten bolts. This will center the recoil on the magneto case.

3. Thread recoil rope through recoil bushing in the console and install the handle. Secure with a knot.

4. Release the slipknot in the rope.
SECTION 9 — AIDS FOR MAINTENANCE

TABLE OF CONTENTS

Special Tools .. 168
General Bolt Torque Specifications 169
Torque Conversions 169
Engine Bolt Torque Specifications 170
Engine Torque Patterns 171
Special Tools

<table>
<thead>
<tr>
<th>P/N</th>
<th>DESCRIPTION</th>
<th>SUPPLIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0133-043</td>
<td>Imprinter</td>
<td>Arctco-CPC</td>
</tr>
<tr>
<td>0144-003</td>
<td>Piston Pin Puller</td>
<td>Arctco-CPC</td>
</tr>
<tr>
<td>0144-007</td>
<td>Flywheel Spanner Wrench</td>
<td>Arctco-CPC</td>
</tr>
<tr>
<td>0144-009</td>
<td>Engine Timing Gauge</td>
<td>Arctco-CPC</td>
</tr>
<tr>
<td>0144-053</td>
<td>Multtester</td>
<td>Arctco-CPC</td>
</tr>
<tr>
<td>0144-108</td>
<td>Ramp Grinding Holder</td>
<td>Arctco-CPC</td>
</tr>
<tr>
<td>0144-110</td>
<td>Arctic Clutch Puller</td>
<td>CPC</td>
</tr>
<tr>
<td>0144-113</td>
<td>Fan Holder</td>
<td>Arctco-CPC</td>
</tr>
<tr>
<td>0144-122</td>
<td>Surface Plate</td>
<td>CPC</td>
</tr>
<tr>
<td>0144-127</td>
<td>Pressure Testing Kit</td>
<td>Arctco-CPC</td>
</tr>
<tr>
<td>0144-135</td>
<td>Comet Clutch Puller</td>
<td>Comet</td>
</tr>
<tr>
<td>0144-136</td>
<td>Comet Grunt Tool</td>
<td>Comet</td>
</tr>
<tr>
<td>0144-301</td>
<td>Track Clip Tool</td>
<td>Arctco-OTC</td>
</tr>
<tr>
<td>0144-302</td>
<td>Bearing Remover (Crankshaft)</td>
<td>Arctco-OTC</td>
</tr>
<tr>
<td>0144-303</td>
<td>Bearing Tool Adapter Kit</td>
<td>OTC</td>
</tr>
<tr>
<td>0144-305</td>
<td>Cylinder Hole Set</td>
<td>Arctco-OTC</td>
</tr>
<tr>
<td>0144-306</td>
<td>Ignition Test Plug</td>
<td>OTC</td>
</tr>
<tr>
<td>0144-307</td>
<td>Mikuni Carburetor Tool Set</td>
<td>Arctco-OTC</td>
</tr>
<tr>
<td>0144-308</td>
<td>Spark Tester</td>
<td>Arctco-OTC</td>
</tr>
<tr>
<td>0144-309</td>
<td>Snowmobile Dolly</td>
<td>CPC</td>
</tr>
<tr>
<td>0355-108</td>
<td>Snowmobile Dolly</td>
<td>CPC</td>
</tr>
<tr>
<td>0144-310</td>
<td>Flywheel Puller/Spider Wrench</td>
<td>Arctco-OTC</td>
</tr>
<tr>
<td>0144-311</td>
<td>Rear Suspension Spring Tool</td>
<td>Arctco-OTC</td>
</tr>
<tr>
<td>0536-068</td>
<td>Sealant, Gasket</td>
<td>Arctco</td>
</tr>
<tr>
<td>0536-070</td>
<td>Sealer, Crankcase</td>
<td>Arctco</td>
</tr>
<tr>
<td>0536-071</td>
<td>Adhesive, H/B Grip</td>
<td>Arctco</td>
</tr>
<tr>
<td>0536-092</td>
<td>Copper Coat</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-001</td>
<td>Spider Repair Tool Kit</td>
<td>Arctco-OTC</td>
</tr>
<tr>
<td>0644-002</td>
<td>Shock Spring Installation Tool</td>
<td>Arctco-OTC</td>
</tr>
<tr>
<td>0644-003</td>
<td>Clutch Alignment Bar</td>
<td>Arctco-OTC</td>
</tr>
<tr>
<td>0644-005</td>
<td>Spider Removal Tool Set (Comet)</td>
<td>Arctco-OTC</td>
</tr>
<tr>
<td>0644-006</td>
<td>Arctic Clutch Bushing Installation Tool</td>
<td>Arctco-OTC</td>
</tr>
<tr>
<td>0644-008</td>
<td>Timing Light</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-009</td>
<td>Clutch Puller (Comet)</td>
<td>Arctco-OTC</td>
</tr>
<tr>
<td>0144-135</td>
<td>Clutch Puller (Comet)</td>
<td>CPC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P/N</th>
<th>DESCRIPTION</th>
<th>SUPPLIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0644-010</td>
<td>Clutch Puller (Arctic)</td>
<td>Arctco-OTC</td>
</tr>
<tr>
<td>0644-012</td>
<td>Wrench, Cylinder Base 14mm</td>
<td>OTC</td>
</tr>
<tr>
<td>0644-013</td>
<td>Wrench, Cylinder Base 12mm</td>
<td>OTC</td>
</tr>
<tr>
<td>0644-014</td>
<td>Track Stud Hole Drill</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-016</td>
<td>Surface Plate</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-018</td>
<td>Stud Runner 6mm</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-019</td>
<td>Stud Runner 8mm</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-020</td>
<td>Stud Runner 10mm</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-022</td>
<td>V Blocks</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-023</td>
<td>Carburetor Synchronizing Tool Adapters</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-027</td>
<td>Carburetor Synchronizing Tool</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-028</td>
<td>Engine Tachometer</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-029</td>
<td>Flywheel Puller</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-030</td>
<td>Rear Shock Adjuster</td>
<td>Arctco-OTC</td>
</tr>
<tr>
<td>0644-031</td>
<td>Rear Spring Adjuster</td>
<td>Arctco-OTC</td>
</tr>
<tr>
<td>0144-112</td>
<td>Flywheel Puller</td>
<td>CPC</td>
</tr>
<tr>
<td>0144-060</td>
<td>Bearing Puller</td>
<td>CPC</td>
</tr>
<tr>
<td>0144-227</td>
<td>Clutch Alignment Bar</td>
<td>CPC</td>
</tr>
<tr>
<td>0133-417</td>
<td>Imprinter Ink Roller</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-033</td>
<td>Multtester</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-034</td>
<td>Engine Compression Tester</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-035</td>
<td>Ball Hole (60-64 mm)</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-036</td>
<td>Ball Hole (65-70 mm)</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-037</td>
<td>Ball Hole (72-74 mm)</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-038</td>
<td>T-nut Tool</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-041</td>
<td>Rigid Hone</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-042</td>
<td>Rigid Hole Stone Set (2.5-2.7 in.)</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-043</td>
<td>Rigid Hole Stone Set (2.7-4.1 in.)</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-044</td>
<td>Alcohol Test Kit</td>
<td>Arctco</td>
</tr>
<tr>
<td>0644-046</td>
<td>Ignition Analyzer</td>
<td>Arctco</td>
</tr>
<tr>
<td>0134-971</td>
<td>RTV Silicone</td>
<td>CPC</td>
</tr>
<tr>
<td>0132-105</td>
<td>Gasket Compound</td>
<td>CPC</td>
</tr>
<tr>
<td>0644-007</td>
<td>Oil Injection Usage Tool</td>
<td>Arctco</td>
</tr>
</tbody>
</table>
General Bolt Torque Specifications

<table>
<thead>
<tr>
<th>SIZE</th>
<th>SAE GRADE 2 ASSEMBLY TORQUE</th>
<th>SAE GRADE 5 ASSEMBLY TORQUE</th>
<th>SAE GRADE 8 ASSEMBLY TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DRY</td>
<td>LUB</td>
<td>DRY</td>
</tr>
<tr>
<td>8-32</td>
<td>19 in.-lb</td>
<td>14 in.-lb</td>
<td>30 in.-lb</td>
</tr>
<tr>
<td>8-36</td>
<td>20 in.-lb</td>
<td>15 in.-lb</td>
<td>31 in.-lb</td>
</tr>
<tr>
<td>10-24</td>
<td>27 in.-lb</td>
<td>21 in.-lb</td>
<td>43 in.-lb</td>
</tr>
<tr>
<td>10-32</td>
<td>31 in.-lb</td>
<td>23 in.-lb</td>
<td>49 in.-lb</td>
</tr>
<tr>
<td>1/4-20</td>
<td>66 in.-lb</td>
<td>50 in.-lb</td>
<td>8 ft-lb</td>
</tr>
<tr>
<td>1/4-28</td>
<td>77 in.-lb</td>
<td>56 in.-lb</td>
<td>10 ft-lb</td>
</tr>
<tr>
<td>5/16-18</td>
<td>12 ft-lb</td>
<td>9 ft-lb</td>
<td>17 ft-lb</td>
</tr>
<tr>
<td>3/8-16</td>
<td>23 ft-lb</td>
<td>17 ft-lb</td>
<td>30 ft-lb</td>
</tr>
<tr>
<td>7/16-14</td>
<td>36 ft-lb</td>
<td>27 ft-lb</td>
<td>50 ft-lb</td>
</tr>
<tr>
<td>7/16-20</td>
<td>50 ft-lb</td>
<td>35 ft-lb</td>
<td>75 ft-lb</td>
</tr>
<tr>
<td>1/2-13</td>
<td>55 ft-lb</td>
<td>40 ft-lb</td>
<td>90 ft-lb</td>
</tr>
<tr>
<td>1/2-20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
Lub indicates lubricants or plating on fasteners.

Torque Conversions

<table>
<thead>
<tr>
<th>ft-lb</th>
<th>kg-m</th>
<th>ft-lb</th>
<th>kg-m</th>
<th>ft-lb</th>
<th>kg-m</th>
<th>ft-lb</th>
<th>kg-m</th>
<th>ft-lb</th>
<th>kg-m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>21</td>
<td>2.9</td>
<td>41</td>
<td>5.7</td>
<td>61</td>
<td>8.4</td>
<td>81</td>
<td>11.2</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>22</td>
<td>3.0</td>
<td>42</td>
<td>5.8</td>
<td>62</td>
<td>8.6</td>
<td>82</td>
<td>11.3</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
<td>23</td>
<td>3.2</td>
<td>43</td>
<td>5.9</td>
<td>63</td>
<td>8.7</td>
<td>83</td>
<td>11.5</td>
</tr>
<tr>
<td>4</td>
<td>0.6</td>
<td>24</td>
<td>3.3</td>
<td>44</td>
<td>6.1</td>
<td>64</td>
<td>8.9</td>
<td>84</td>
<td>11.6</td>
</tr>
<tr>
<td>5</td>
<td>0.7</td>
<td>25</td>
<td>3.5</td>
<td>45</td>
<td>6.2</td>
<td>65</td>
<td>9.0</td>
<td>85</td>
<td>11.8</td>
</tr>
<tr>
<td>6</td>
<td>0.8</td>
<td>26</td>
<td>3.6</td>
<td>46</td>
<td>6.4</td>
<td>66</td>
<td>9.1</td>
<td>86</td>
<td>11.9</td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
<td>27</td>
<td>3.7</td>
<td>47</td>
<td>6.5</td>
<td>67</td>
<td>9.3</td>
<td>87</td>
<td>12.0</td>
</tr>
<tr>
<td>8</td>
<td>1.1</td>
<td>28</td>
<td>3.9</td>
<td>48</td>
<td>6.6</td>
<td>68</td>
<td>9.4</td>
<td>88</td>
<td>12.2</td>
</tr>
<tr>
<td>9</td>
<td>1.2</td>
<td>29</td>
<td>4.0</td>
<td>49</td>
<td>6.8</td>
<td>69</td>
<td>9.5</td>
<td>89</td>
<td>12.3</td>
</tr>
<tr>
<td>10</td>
<td>1.4</td>
<td>30</td>
<td>4.2</td>
<td>50</td>
<td>6.9</td>
<td>70</td>
<td>9.7</td>
<td>90</td>
<td>12.5</td>
</tr>
<tr>
<td>11</td>
<td>1.5</td>
<td>31</td>
<td>4.3</td>
<td>51</td>
<td>7.1</td>
<td>71</td>
<td>9.8</td>
<td>91</td>
<td>12.6</td>
</tr>
<tr>
<td>12</td>
<td>1.7</td>
<td>32</td>
<td>4.4</td>
<td>52</td>
<td>7.2</td>
<td>72</td>
<td>10.0</td>
<td>92</td>
<td>12.8</td>
</tr>
<tr>
<td>13</td>
<td>1.8</td>
<td>33</td>
<td>4.6</td>
<td>53</td>
<td>7.3</td>
<td>73</td>
<td>10.1</td>
<td>93</td>
<td>12.9</td>
</tr>
<tr>
<td>14</td>
<td>1.9</td>
<td>34</td>
<td>4.7</td>
<td>54</td>
<td>7.5</td>
<td>74</td>
<td>10.2</td>
<td>94</td>
<td>13.0</td>
</tr>
<tr>
<td>15</td>
<td>2.1</td>
<td>35</td>
<td>4.8</td>
<td>55</td>
<td>7.6</td>
<td>75</td>
<td>10.4</td>
<td>95</td>
<td>13.1</td>
</tr>
<tr>
<td>16</td>
<td>2.2</td>
<td>36</td>
<td>5.0</td>
<td>56</td>
<td>7.7</td>
<td>76</td>
<td>10.5</td>
<td>96</td>
<td>13.3</td>
</tr>
<tr>
<td>17</td>
<td>2.4</td>
<td>37</td>
<td>5.1</td>
<td>57</td>
<td>7.9</td>
<td>77</td>
<td>10.7</td>
<td>97</td>
<td>13.4</td>
</tr>
<tr>
<td>18</td>
<td>2.5</td>
<td>38</td>
<td>5.3</td>
<td>58</td>
<td>8.0</td>
<td>78</td>
<td>10.8</td>
<td>98</td>
<td>13.6</td>
</tr>
<tr>
<td>19</td>
<td>2.6</td>
<td>39</td>
<td>5.4</td>
<td>59</td>
<td>8.2</td>
<td>79</td>
<td>10.9</td>
<td>99</td>
<td>13.7</td>
</tr>
<tr>
<td>20</td>
<td>2.8</td>
<td>40</td>
<td>5.5</td>
<td>60</td>
<td>8.3</td>
<td>80</td>
<td>11.1</td>
<td>100</td>
<td>13.8</td>
</tr>
</tbody>
</table>

kg-m x 7.235 = ft-lb

ft-lb x 0.1383 = kg-m
Engine Bolt Torque Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Cougar-Cheetah F/C</th>
<th>El Tigre 5000-Pantera</th>
<th>El Tigre 6000-Cheetah L/C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg-m</td>
<td>ft-lb</td>
<td>kg-m</td>
</tr>
<tr>
<td>Cylinder-Head Nuts</td>
<td>2.0-2.5</td>
<td>14-18</td>
<td>3.0-4.0</td>
</tr>
<tr>
<td>Cylinder-Base Nuts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 mm</td>
<td>3.0-4.0</td>
<td>22-29</td>
<td>1.8-2.2</td>
</tr>
<tr>
<td>10 mm</td>
<td>1.8-2.2</td>
<td>13-16</td>
<td>1.8-2.2</td>
</tr>
<tr>
<td>Crankcase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 mm</td>
<td>0.8-1.0</td>
<td>6-7</td>
<td>0.8-1.0</td>
</tr>
<tr>
<td>10 mm</td>
<td>1.8-2.2</td>
<td>13-16</td>
<td>1.8-2.2</td>
</tr>
<tr>
<td>Exhaust-Manifold Nuts</td>
<td>1.8-2.2</td>
<td>13-16</td>
<td>1.5-1.9</td>
</tr>
<tr>
<td>Intake-Manifold Nuts</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Intake-Flange Nuts</td>
<td>1.5-1.9</td>
<td>11-14</td>
<td>1.5-1.9</td>
</tr>
<tr>
<td>Magneto-Case Screws</td>
<td>0.7-1.0</td>
<td>5-7</td>
<td>0.7-1.0</td>
</tr>
<tr>
<td>Engine-Mounting Bolts</td>
<td>6.9-7.6</td>
<td>50-55</td>
<td>6.9-7.6</td>
</tr>
<tr>
<td>Fan-Case Nuts</td>
<td>1.5-1.9</td>
<td>11-14</td>
<td>N/A</td>
</tr>
<tr>
<td>Mounts</td>
<td>2.8-3.5</td>
<td>20-25</td>
<td>2.8-3.5</td>
</tr>
</tbody>
</table>

N/A = Not Applicable
Engine Torque Patterns

<table>
<thead>
<tr>
<th>CYLINDER HEAD</th>
<th>CYLINDER BASE</th>
<th>CRANKCASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cougar-Cheetah F/C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pantera-El Tigre 5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Tigre 6000-Cheetah L/C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SECTION 10 — TROUBLESHOOTING

TABLE OF CONTENTS

Engine .. 174-177
Fuel System ... 178-179
Drive Clutch/Driven Pulley
 (Pantera, Cougar, & Cheetah F/C) 179-181
Drive Clutch (El Tigre & Cheetah L/C) 181
Drive Belt .. 182
Track ... 183
Light System .. 184
Engine

<table>
<thead>
<tr>
<th>Problem: Engine Does Not Start</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| **A. No Spark At Spark Plugs** | 1. Ignition switch malfunctioning—switch not in RUN position
2. Wiring harness shorting—disconnected
3. Emergency stop switch in DOWN position—switch malfunctioning
4. Throttle/ignition monitor switch adjusted incorrectly—malfunctioning
5. Spark plugs fouled—damaged
6. Spark-plug gaps damaged—leaking—shorting
7. High tension wires/coil loose—grounded—defective
8. CDI unit defective
9. Charge coil defective
10. Trigger coil defective
11. Flywheel magnets weak | 1. Replace ignition switch—turn switch to RUN position
2. Repair—replace—connect wiring harness
3. Move switch to UP position—replace throttle switch
4. Adjust throttle cable tension—replace throttle switch
5. Clean—replace spark plugs
6. Replace spark-plug caps
7. Service—replace high tension wires/coil
8. Replace CDI unit
9. Replace charge coil
10. Replace trigger coil
11. Replace flywheel |
| **B. No Fuel At Cylinders** | 1. Fuel tank empty
2. Fuel hose broken—pinched
3. Fuel-tank vent—hose obstructed
4. In-line fuel filter obstructed—damaged
5. Fuel pump malfunctioning—defective
6. Impulse hose cracked—broken—pinched—disconnected
7. Carburetor(s) adjusted incorrectly—dirty—damaged
8. Primary compression absent | 1. Fill tank
2. Replace—service hose
3. Remove obstruction—replace vent—hose
4. Remove obstruction—replace in-line fuel filter
5. Replace—clean fuel pump
6. Replace—connect impulse hose
7. Troubleshoot carburetor(s)
8. Repair—replace damaged—worn engine components |
| **C. Miscellany (Fuel Does Not Ignite)** | 1. Carburetor-to-cylinder air leak
2. Carburetor adjusted incorrectly—dirty—damaged
3. Gasoline contaminated
4. Engine flooded | 1. Replace—service gaskets—intake flange—manifold—connect oil delivery hose—service intake ports
2. Troubleshoot carburetor
3. Clean tank and entire delivery system
4. Troubleshoot carburetor—clean—replace air-intake silencer |
<table>
<thead>
<tr>
<th>Problem: Engine Does Not Start (cont.)</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous (Fuel Does Not Ignite)</td>
<td>5. Compression low</td>
<td>5. Repair—replace damaged—worn engine components</td>
</tr>
<tr>
<td></td>
<td>6. Timing adjusted incorrectly</td>
<td>6. Time ignition</td>
</tr>
<tr>
<td></td>
<td>7. Oil-injection pump malfunction-adjusted incorrectly</td>
<td>7. Replace—bleed—adjust oil-injection pump</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem: Engine Does Not Idle</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Carburetor(s) adjusted incorrectly—dirty—damaged</td>
<td>1. Troubleshoot carburetor(s)</td>
<td></td>
</tr>
<tr>
<td>2. Fuel pump malfunctioning—defective</td>
<td>2. Replace—clean fuel pump</td>
<td></td>
</tr>
<tr>
<td>3. Impulse hose cracked—broken</td>
<td>3. Replace impulse hose</td>
<td></td>
</tr>
<tr>
<td>4. Air-intake silencer obstructed—damaged</td>
<td>4. Remove obstruction—replace air-intake silencer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem: Engine Loses Power</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fuel-tank vent—hose obstructed</td>
<td>1. Remove obstruction—replace vent—hose</td>
<td></td>
</tr>
<tr>
<td>2. Fuel hose cracked—broken—pinched</td>
<td>2. Replace—service fuel hose</td>
<td></td>
</tr>
<tr>
<td>3. In-line fuel filter obstructed—damaged</td>
<td>3. Remove obstruction—replace in-line fuel filter</td>
<td></td>
</tr>
<tr>
<td>4. Carburetor(s) adjusted incorrectly—dirty—damaged—loose</td>
<td>4. Troubleshoot—tighten carburetor(s)</td>
<td></td>
</tr>
<tr>
<td>5. Muffler obstructed—disconnected—damaged</td>
<td>5. Remove obstruction—connect—replace muffler</td>
<td></td>
</tr>
<tr>
<td>6. Air-intake silencer obstructed—disconnected—damaged</td>
<td>6. Remove obstruction—connect—replace air-intake silencer</td>
<td></td>
</tr>
<tr>
<td>7. Exhaust ports carboned</td>
<td>7. Clean exhaust ports</td>
<td></td>
</tr>
<tr>
<td>8. Spark plugs fouled—damaged</td>
<td>8. Clean—replace spark plugs</td>
<td></td>
</tr>
<tr>
<td>9. High tension wires/coil</td>
<td>9. Service—replace high tension wires/coil</td>
<td></td>
</tr>
<tr>
<td>10. Spark-plug caps leaking—shorting</td>
<td>10. Replace spark-plug caps</td>
<td></td>
</tr>
<tr>
<td>11. Timing adjusted incorrectly</td>
<td>11. Time ignition</td>
<td></td>
</tr>
<tr>
<td>12. Compression low</td>
<td>12. Repair—replace damaged—worn engine components</td>
<td></td>
</tr>
<tr>
<td>13. Charge coil defective</td>
<td>13. Replace charge coil</td>
<td></td>
</tr>
<tr>
<td>15. CDI unit defective</td>
<td>15. Replace CDI unit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem: Engine Overheats</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cooling fins obstructed</td>
<td>1. Remove obstruction</td>
<td></td>
</tr>
<tr>
<td>2. Spark plug heat range too hot</td>
<td>2. Install lower heat-range spark plugs</td>
<td></td>
</tr>
<tr>
<td>3. Coolant low—absent</td>
<td>3. Add coolant</td>
<td></td>
</tr>
<tr>
<td>4. Radiator obstructed—damaged</td>
<td>4. Remove obstruction—replace radiator</td>
<td></td>
</tr>
<tr>
<td>5. Carburetor(s) adjusted incorrectly—jetted incorrectly—dirty</td>
<td>5. Troubleshoot—clean carburetor(s)</td>
<td></td>
</tr>
<tr>
<td>Problem: Engine Condition Remedy</td>
<td>Condition</td>
<td>Remedy</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>Overheats (cont.)</td>
<td>6. Carburetor-to-cylinder air leak</td>
<td>6. Replace—repair gaskets—intake flange(s)—manifold—service intake ports</td>
</tr>
<tr>
<td></td>
<td>7. Drive system (drive clutch—driven pulley—track—drive belt) adjusted incorrectly—worn—damaged</td>
<td>7. Troubleshoot—adjust drive system</td>
</tr>
<tr>
<td></td>
<td>8. Rings/grooves carboned</td>
<td>8. Clean—replace rings—pistons</td>
</tr>
<tr>
<td></td>
<td>10. Muffler obstructed</td>
<td>10. Remove obstruction</td>
</tr>
<tr>
<td></td>
<td>11. Fuel mixture incorrect</td>
<td>11. Replace with correctly mixed fuel</td>
</tr>
<tr>
<td></td>
<td>12. Primary compression low—absent</td>
<td>12. Replace—replace damaged—worn engine components</td>
</tr>
<tr>
<td></td>
<td>15. Gasoline octane too low</td>
<td>15. Use 88 minimum octane regular leaded</td>
</tr>
<tr>
<td>Backfires</td>
<td>1. Throttle/ignition monitor switch adjusted incorrectly</td>
<td>1. Adjust throttle cable tension—service spring</td>
</tr>
<tr>
<td></td>
<td>2. Spark plugs fouled—damaged</td>
<td>2. Clean—replace spark plugs</td>
</tr>
<tr>
<td></td>
<td>3. Spark plug heat range too hot</td>
<td>3. Install lower heat-range spark plugs</td>
</tr>
<tr>
<td></td>
<td>4. High tension wires/coil shorting</td>
<td>4. Service—replace high tension wires/coil</td>
</tr>
<tr>
<td></td>
<td>5. Carburetor-to-cylinder air leak</td>
<td>5. Repair—replace gaskets—intake flanges—manifold—service intake ports</td>
</tr>
<tr>
<td></td>
<td>6. Carburetor(s) adjusted incorrectly—dirty—damaged—loose</td>
<td>6. Troubleshoot—tighten carburetor(s)</td>
</tr>
<tr>
<td></td>
<td>7. Fuel mixture incorrect</td>
<td>7. Replace with correctly mixed fuel</td>
</tr>
<tr>
<td></td>
<td>8. Oil-injection pump malfunction—adjusted incorrectly</td>
<td>8. Replace—bleed—adjust oil-injection pump</td>
</tr>
<tr>
<td>Four-Cycles (Floods Excessively)</td>
<td>1. Carburetor(s) adjusted incorrectly—dirty—damaged</td>
<td>1. Troubleshoot—clean carburetor(s)</td>
</tr>
<tr>
<td></td>
<td>2. Fuel mixture incorrect</td>
<td>2. Replace with correctly mixed fuel</td>
</tr>
<tr>
<td></td>
<td>3. Oil-injection pump malfunction—adjusted incorrectly</td>
<td>3. Replace—bleed—adjust oil-injection pump</td>
</tr>
<tr>
<td></td>
<td>4. Air Intake Silencer obstructed</td>
<td>4. Remove obstruction</td>
</tr>
<tr>
<td>Problem: Engine Stops Suddenly</td>
<td>Condition</td>
<td>Remedy</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| | 1. In-line fuel filter obstructed—damaged
2. Fuel hose obstructed—broken—pinched
3. CDI unit defective
4. Ignition coil defective
5. Charge coil defective
6. Trigger coil defective
7. Fuel-tank vent—hose obstructed—damaged
8. Engine seized
2. Remove obstruction—repair—replace fuel hose
3. Replace CDI unit
4. Replace ignition coil
5. Replace charge coil
6. Replace trigger coil
7. Remove obstruction—replace vent—hose
8. Overhaul engine
9. Replace throttle control—adjust throttle cable |

<table>
<thead>
<tr>
<th>Problem: Engine Stops Gradually</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| | 1. In-line fuel filter obstructed—damaged
2. Fuel hose obstructed—broken—pinched
3. Head gasket(s) burning out
4. Cylinder head(s) loosening
5. Spark plugs loosening
6. Impulse hose cracked
7. High tension wires/coil defective | 1. Remove obstruction—replace in-line fuel filter
2. Remove obstruction—replace—repair fuel hose
3. Replace head gasket(s)—service cylinders—head(s)
4. Tighten cylinder-head nuts
5. Tighten spark plugs
6. Replace impulse hose
7. Replace high tension wires/coil |

<table>
<thead>
<tr>
<th>Problem: Engine Fails to Stop. (Continues to Run, even with all Switches Turned Off)</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. CDI unit shorted to ground</td>
<td>1. Replace CDI unit</td>
</tr>
</tbody>
</table>
Fuel System

<table>
<thead>
<tr>
<th>Problem: Carburetor (0-1/4 Opening)</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Too Rich</td>
<td>1. Plunger will not seat</td>
<td>1. Adjust—service—replace choke cable—plunger assembly</td>
</tr>
<tr>
<td></td>
<td>2. Pilot air screw too far in</td>
<td>2. Adjust pilot air screw</td>
</tr>
<tr>
<td></td>
<td>5. Pilot jet loose</td>
<td>5. Tighten pilot jet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pilot air screw too far in—damaged</td>
<td>1. Adjust—replace pilot air screw</td>
</tr>
<tr>
<td>2. Needle jet—jet needle worn—adjusted incorrectly —incorrect</td>
<td>2. Replace—adjust needle jet—replace jet needle</td>
</tr>
<tr>
<td>4. Pilot jet loose</td>
<td>4. Tighten pilot jet</td>
</tr>
<tr>
<td>5. Float/inlet needle obstructed—damaged—adjusted incorrectly</td>
<td>5. Remove obstruction—replace inlet needle—float—adjust float tab</td>
</tr>
<tr>
<td>6. Main jet loose—too large</td>
<td>6. Tighten—replace main jet</td>
</tr>
<tr>
<td>7. Primary air passage obstructed</td>
<td>7. Remove obstruction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem: Carburetor (1/4-3/4 Opening)</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Too Rich</td>
<td>1. Pilot air screw too far in—damaged</td>
<td>1. Adjust pilot air screw</td>
</tr>
<tr>
<td></td>
<td>2. Needle jet—jet needle worn—adjusted incorrectly—incorrect</td>
<td>2. Replace—adjust needle jet—replace jet needle</td>
</tr>
<tr>
<td></td>
<td>4. Pilot jet loose</td>
<td>4. Tighten pilot jet</td>
</tr>
<tr>
<td></td>
<td>5. Float/inlet needle obstructed—damaged—adjusted incorrectly</td>
<td>5. Remove obstruction—replace inlet needle—float—adjust float tab</td>
</tr>
<tr>
<td></td>
<td>6. Main jet loose—too large</td>
<td>6. Tighten—replace main jet</td>
</tr>
<tr>
<td></td>
<td>7. Primary air passage obstructed</td>
<td>7. Remove obstruction</td>
</tr>
</tbody>
</table>

B. Too Lean	1. Pilot air screw too far out—damaged	1. Adjust—replace pilot air screw
	2. Needle jet obstructed	2. Remove obstruction
	3. Pilot outlet—main jet obstructed	3. Remove obstruction

<table>
<thead>
<tr>
<th>Problem: Carburetor (3/4—WOT Opening)</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Too Rich</td>
<td>1. Main jet loose—too large</td>
<td>1. Tighten—replace with smaller main jet</td>
</tr>
<tr>
<td></td>
<td>2. Float/inlet needle obstructed—damaged—adjusted incorrectly</td>
<td>2. Remove obstruction—replace inlet needle—float—adjust float tab</td>
</tr>
<tr>
<td></td>
<td>3. Needle jet—jet needle worn—adjusted incorrectly—incorrect</td>
<td>3. Replace—adjust needle jet—replace jet needle</td>
</tr>
<tr>
<td>Problem: Carburetor Condition (3/4-WOT Opening) (cont.)</td>
<td>Condition</td>
<td>Remedy</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>B. Too Lean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Main jet obstructed—too small</td>
<td></td>
<td>1. Remove obstruction—replace with larger main jet</td>
</tr>
<tr>
<td>2. Float/inlet needle obstructed—damaged—adjusted incorrectly</td>
<td></td>
<td>2. Remove obstruction—replace inlet needle—float—adjust float tab</td>
</tr>
<tr>
<td>3. Needle jet—jet needle obstructed</td>
<td></td>
<td>3. Remove obstruction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem: General Fuel System</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Engine Cuts Out At High RPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Inadequate fuel delivery</td>
<td></td>
<td>1. Replace fuel pump—impulse hose</td>
</tr>
<tr>
<td>2. In-line fuel filter obstructed—damaged</td>
<td></td>
<td>2. Remove obstruction—replace in-line fuel filter</td>
</tr>
<tr>
<td>3. Fuel contaminated</td>
<td></td>
<td>3. Replace fuel—de-ice—clean carburetor</td>
</tr>
<tr>
<td>B. One Cylinder Runs Lean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Carburetor-to-cylinder air leak</td>
<td></td>
<td>1. Repair—replace gaskets—flange—manifold—service intake ports—tighten clamp(s)</td>
</tr>
<tr>
<td>2. Carburetor(s) not aligned</td>
<td></td>
<td>2. Align carburetor(s)</td>
</tr>
<tr>
<td>3. Air-intake silencer obstructed—damaged</td>
<td></td>
<td>3. Remove obstruction—replace air-intake silencer</td>
</tr>
<tr>
<td>4. Primary compression low</td>
<td></td>
<td>4. Troubleshoot engine</td>
</tr>
<tr>
<td>5. Carburetors not synchronized</td>
<td></td>
<td>5. Synchronize carburetors</td>
</tr>
</tbody>
</table>

Drive Clutch-Driven Pulley (Pantera-Cougar-Cheetah F/C)

<table>
<thead>
<tr>
<th>Problem: Drive Clutch Engagement</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Before Specified RPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Spring weak</td>
<td></td>
<td>1. Replace spring</td>
</tr>
<tr>
<td>2. Spider assembly loose</td>
<td></td>
<td>2. Tighten spider assembly set screws</td>
</tr>
<tr>
<td>B. After Specified RPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Drive clutch components dirty</td>
<td></td>
<td>1. Clean drive clutch components</td>
</tr>
<tr>
<td>2. Rollers—ramps worn—damaged</td>
<td></td>
<td>2. Replace rollers—ramps</td>
</tr>
<tr>
<td>3. Bushing worn—damaged</td>
<td></td>
<td>3. Replace bushing</td>
</tr>
<tr>
<td>4. Bearing/movable sheave clearance excessive</td>
<td></td>
<td>4. Replace bearing/movable sheave</td>
</tr>
<tr>
<td>5. Spider assembly loose</td>
<td></td>
<td>5. Tighten spider assembly set screws</td>
</tr>
<tr>
<td>Problem: Maximum Drive Clutch RPM</td>
<td>Condition</td>
<td>Remedy</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>A. Too High</td>
<td>1. Drive clutch components dirty</td>
<td>1. Clean drive clutch components</td>
</tr>
</tbody>
</table>
| B. Too Low | 1. Spring weak
2. Rollers—ramps worn—damaged | 1. Replace spring
2. Replace rollers—ramps |

<table>
<thead>
<tr>
<th>Problem: Midrange Shift-Up</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| A. Too Quickly (Lowers RPM) | 1. Drive clutch spring weak
2. Driven pulley spring weak
3. Spring preload tension inadequate
4. Center-to-center distance too close
5. Driven pulley bushing (bearing) worn—damaged | 1. Replace drive clutch spring
2. Replace driven pulley spring
3. Increase spring preload tension
4. Adjust center-to-center distance
5. Replace bearing—movable sheave |
| B. Too Slowly (Raises RPM) | 1. Drive clutch components dirty
2. Driven pulley components dirty
3. Spring preload tension excessive
4. Shoe-ramp slides worn excessively
5. Driven pulley bushing (bearing) worn—damaged | 1. Clean drive clutch components
2. Clean driven pulley components
3. Decrease spring preload tension
4. Replace shoe-ramp slides
5. Replace bearing—movable sheave |

<table>
<thead>
<tr>
<th>Problem: Excessive Belt Deposits</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| 1. Offset adjusted incorrectly
2. Drive clutch/driven pulley sheaves rough—damaged—dirty
3. Driven pulley movable sheave travel impaired
4. Driven pulley bushing (bearing) worn—dirty | 1. Adjust offset
2. Repair—replace—clean drive clutch/driven pulley sheaves
3. Service driven pulley
4. Clean—replace bushing movable sheave |

<table>
<thead>
<tr>
<th>Problem: Excessive Belt Drag—Impaired Drive Clutch Disengagement</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| 1. Drive clutch components—dirty—damaged
2. Drive belt does not meet measurement specifications | 1. Clean—replace drive clutch components
2. Replace drive belt |

<table>
<thead>
<tr>
<th>Problem: Engine RPM Suddenly Increases—Drive Clutch Vibrates</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| 1. Spider-arm pin bent—damaged
2. Spider arm damaged—broken
3. Weight bolt broken
4. Drive clutch out of balance | 1. Replace spider assembly
2. Replace spider assembly
3. Replace bolt
4. Align—replace components—clutch |
<table>
<thead>
<tr>
<th>Problem: Driven Pulley Vibrates</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Sheave rivets loose—broken</td>
<td>1. Replace sheave</td>
</tr>
<tr>
<td></td>
<td>2. Driven pulley out of balance</td>
<td>2. Service—replace driven pulley</td>
</tr>
</tbody>
</table>

Drive Clutch (El Tigre-Cheetah L/C)

<table>
<thead>
<tr>
<th>Problem: Drive Clutch Engagement</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| A. Before Specified RPM | 1. Spring weak—broken
 | 2. Cam arm(s) incorrect—worn | 1. Replace spring
 | | 2. Replace cam arm(s) | |
| B. After Specified RPM | 1. Spring incorrect | 1. Replace spring |
 | 2. Guide buttons worn | 2. Replace guide buttons |

<table>
<thead>
<tr>
<th>Problem: Drive Clutch Sticks</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| | 1. Drive clutch components dirty
 | 2. Movable sheave bent—binding
 | | 2. Clean—replace movable sheave
 | | 3. Replace guide buttons |

<table>
<thead>
<tr>
<th>Problem: Jerks—Shifts Erratically</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Drive clutch dirty</td>
<td>1. Clean—repair drive clutch</td>
<td></td>
</tr>
<tr>
<td>2. Rollers worn</td>
<td>2. Replace rollers</td>
<td></td>
</tr>
<tr>
<td>3. Cam arms rough</td>
<td>3. Polish—replace cam arms</td>
<td></td>
</tr>
<tr>
<td>5. Sheaves dirty</td>
<td>5. Clean sheaves</td>
<td></td>
</tr>
</tbody>
</table>

Drive Belt

<table>
<thead>
<tr>
<th>Problem: Drive Belt Glazed</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Drive belt does not meet measurement specifications</td>
<td>1. Replace drive belt</td>
</tr>
<tr>
<td></td>
<td>2. Drive clutch spring tension inadequate</td>
<td>2. Replace drive clutch spring</td>
</tr>
<tr>
<td></td>
<td>3. Drive clutch components dirty—damaged</td>
<td>3. Clean—replace drive clutch components</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem: Drive Belt Lugs Torn Off—Frayed—Worn In One Spot</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Drive belt does not meet measurement specifications</td>
<td>1. Replace drive belt</td>
</tr>
<tr>
<td></td>
<td>3. Drive clutch engagement—idle rpm too high</td>
<td>3. Service drive clutch—reduce idle rpm</td>
</tr>
<tr>
<td></td>
<td>4. Drive clutch components dirty—damaged</td>
<td>4. Clean—replace drive clutch components</td>
</tr>
<tr>
<td></td>
<td>5. Driven pulley/shaft rotation impaired</td>
<td>5. Service driven pulley/shaft—chain-case components</td>
</tr>
<tr>
<td>Problem: Track Edge Frayed—Drive Lugs Worn</td>
<td>Condition</td>
<td>Remedy</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>1. Track alignment adjusted incorrectly</td>
<td>1. Align track</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem: Track Worn Adjacent To Outer Drive Lugs</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Track tension adjusted incorrectly</td>
<td>1. Adjust track tension</td>
</tr>
<tr>
<td></td>
<td>2. Rear idler wheels dirty—damaged</td>
<td>2. Clean—replace idler wheels</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem: Track Ratchets—Slaps Tunnel</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Track tension adjusted incorrectly (too loose)</td>
<td>1. Adjust track tension</td>
</tr>
<tr>
<td></td>
<td>2. Drive sprockets misaligned—damaged</td>
<td>2. Align—replace sprockets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem: Wear-Strip Wear Excessive</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Slide rail bent—broken—damaged</td>
<td>1. Repair—replace slide rail</td>
</tr>
<tr>
<td></td>
<td>2. Track alignment adjusted incorrectly</td>
<td>2. Adjust track alignment</td>
</tr>
</tbody>
</table>
Light System

<table>
<thead>
<tr>
<th>Problem: Bulbs Burn Out Repeatedly</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Voltage regulator malfunctioning—damaged—defective—not connected</td>
<td>1. Replace—connect regulator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem: Complete Lighting System Failure</th>
<th>Condition</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| | 1. Wiring harness connectors disconnected—damaged
2. Lighting coil defective | 1. Connect—replace harness—connectors
2. Replace lighting coil |